Abstract:High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in $0\sim 5$ and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their knowledge and generative capabilities, leading to a surge of interest in leveraging LLMs for high-quality data synthesis. However, synthetic data generation via prompting LLMs remains challenging due to LLMs' limited understanding of target data distributions and the complexity of prompt engineering, especially for structured formatted data. To address these issues, we introduce DiffLM, a controllable data synthesis framework based on variational autoencoder (VAE), which further (1) leverages diffusion models to reserve more information of original distribution and format structure in the learned latent distribution and (2) decouples the learning of target distribution knowledge from the LLM's generative objectives via a plug-and-play latent feature injection module. As we observed significant discrepancies between the VAE's latent representations and the real data distribution, the latent diffusion module is introduced into our framework to learn a fully expressive latent distribution. Evaluations on seven real-world datasets with structured formatted data (i.e., Tabular, Code and Tool data) demonstrate that DiffLM generates high-quality data, with performance on downstream tasks surpassing that of real data by 2-7 percent in certain cases. The data and code will be publicly available upon completion of internal review.
Abstract:In this paper, we develop a unified framework for lower bound methods in statistical estimation and interactive decision making. Classical lower bound techniques -- such as Fano's inequality, Le Cam's method, and Assouad's lemma -- have been central to the study of minimax risk in statistical estimation, yet they are insufficient for the analysis of methods that collect data in an interactive manner. The recent minimax lower bounds for interactive decision making via the Decision-Estimation Coefficient (DEC) appear to be genuinely different from the classical methods. We propose a unified view of these distinct methodologies through a general algorithmic lower bound method. We further introduce a novel complexity measure, decision dimension, which facilitates the derivation of new lower bounds for interactive decision making. In particular, decision dimension provides a characterization of bandit learnability for any structured bandit model class. Further, we characterize the sample complexity of learning convex model class up to a polynomial gap with the decision dimension, addressing the remaining gap between upper and lower bounds in Foster et al. (2021, 2023).
Abstract:Throughout its lifecycle, a large language model (LLM) generates a substantially larger carbon footprint during inference than training. LLM inference requests vary in batch size, prompt length, and token generation number, while cloud providers employ different GPU types and quantities to meet diverse service-level objectives for accuracy and latency. It is crucial for both users and cloud providers to have a tool that quickly and accurately estimates the carbon impact of LLM inferences based on a combination of inference request and hardware configurations before execution. Estimating the carbon footprint of LLM inferences is more complex than training due to lower and highly variable model FLOPS utilization, rendering previous equation-based models inaccurate. Additionally, existing machine learning (ML) prediction methods either lack accuracy or demand extensive training data, as they inadequately handle the distinct prefill and decode phases, overlook hardware-specific features, and inefficiently sample uncommon inference configurations. We introduce \coo, a graph neural network (GNN)-based model that greatly improves the accuracy of LLM inference carbon footprint predictions compared to previous methods.
Abstract:Advanced facial recognition technologies and recommender systems with inadequate privacy technologies and policies for facial interactions increase concerns about bioprivacy violations. With the proliferation of video and live-streaming websites, public-face video distribution and interactions pose greater privacy risks. Existing techniques typically address the risk of sensitive biometric information leakage through various privacy enhancement methods but pose a higher security risk by corrupting the information to be conveyed by the interaction data, or by leaving certain biometric features intact that allow an attacker to infer sensitive biometric information from them. To address these shortcomings, in this paper, we propose a neural network framework, CausalVE. We obtain cover images by adopting a diffusion model to achieve face swapping with face guidance and use the speech sequence features and spatiotemporal sequence features of the secret video for dynamic video inference and prediction to obtain a cover video with the same number of frames as the secret video. In addition, we hide the secret video by using reversible neural networks for video hiding so that the video can also disseminate secret data. Numerous experiments prove that our CausalVE has good security in public video dissemination and outperforms state-of-the-art methods from a qualitative, quantitative, and visual point of view.
Abstract:Preference Optimization (PO), is gaining popularity as an alternative choice of Proximal Policy Optimization (PPO) for aligning Large Language Models (LLMs). Recent research on aligning LLMs iteratively with synthetic or partially synthetic data shows promising results in scaling up PO training for both academic settings and proprietary trained models such as Llama3. Despite its success, our study shows that the length exploitation issue present in PO is even more severe in Iterative Preference Optimization (IPO) due to the iterative nature of the process. In this work, we study iterative preference optimization with synthetic data. We share the findings and analysis along the way of building the iterative preference optimization pipeline. More specifically, we discuss the length exploitation issue during iterative preference optimization and propose our training objective for iterative preference optimization, namely Agreement-aware Iterative Preference Optimization (AIPO). To demonstrate the effectiveness of our method, we conduct comprehensive experiments and achieve state-of-the-art performance on MT-Bench, AlpacaEval 2.0, and Arena-Hard. Our implementation and model checkpoints will be made available at https://github.com/bytedance/AIPO.
Abstract:Current quantum generative adversarial networks (QGANs) still struggle with practical-sized data. First, many QGANs use principal component analysis (PCA) for dimension reduction, which, as our studies reveal, can diminish the QGAN's effectiveness. Second, methods that segment inputs into smaller patches processed by multiple generators face scalability issues. In this work, we propose LSTM-QGAN, a QGAN architecture that eliminates PCA preprocessing and integrates quantum long short-term memory (QLSTM) to ensure scalable performance. Our experiments show that LSTM-QGAN significantly enhances both performance and scalability over state-of-the-art QGAN models, with visual data improvements, reduced Frechet Inception Distance scores, and reductions of 5x in qubit counts, 5x in single-qubit gates, and 12x in two-qubit gates.
Abstract:Portrait Fidelity Generation is a prominent research area in generative models, with a primary focus on enhancing both controllability and fidelity. Current methods face challenges in generating high-fidelity portrait results when faces occupy a small portion of the image with a low resolution, especially in multi-person group photo settings. To tackle these issues, we propose a systematic solution called MagicID, based on a self-constructed million-level multi-modal dataset named IDZoom. MagicID consists of Multi-Mode Fusion training strategy (MMF) and DDIM Inversion based ID Restoration inference framework (DIIR). During training, MMF iteratively uses the skeleton and landmark modalities from IDZoom as conditional guidance. By introducing the Clone Face Tuning in training stage and Mask Guided Multi-ID Cross Attention (MGMICA) in inference stage, explicit constraints on face positional features are achieved for multi-ID group photo generation. The DIIR aims to address the issue of artifacts. The DDIM Inversion is used in conjunction with face landmarks, global and local face features to achieve face restoration while keeping the background unchanged. Additionally, DIIR is plug-and-play and can be applied to any diffusion-based portrait generation method. To validate the effectiveness of MagicID, we conducted extensive comparative and ablation experiments. The experimental results demonstrate that MagicID has significant advantages in both subjective and objective metrics, and achieves controllable generation in multi-person scenarios.
Abstract:The emerging video LMMs (Large Multimodal Models) have achieved significant improvements on generic video understanding in the form of VQA (Visual Question Answering), where the raw videos are captured by cameras. However, a large portion of videos in real-world applications are edited videos, \textit{e.g.}, users usually cut and add effects/modifications to the raw video before publishing it on social media platforms. The edited videos usually have high view counts but they are not covered in existing benchmarks of video LMMs, \textit{i.e.}, ActivityNet-QA, or VideoChatGPT benchmark. In this paper, we leverage the edited videos on a popular short video platform, \textit{i.e.}, TikTok, and build a video VQA benchmark (named EditVid-QA) covering four typical editing categories, i.e., effect, funny, meme, and game. Funny and meme videos benchmark nuanced understanding and high-level reasoning, while effect and game evaluate the understanding capability of artificial design. Most of the open-source video LMMs perform poorly on the EditVid-QA benchmark, indicating a huge domain gap between edited short videos on social media and regular raw videos. To improve the generalization ability of LMMs, we collect a training set for the proposed benchmark based on both Panda-70M/WebVid raw videos and small-scale TikTok/CapCut edited videos, which boosts the performance on the proposed EditVid-QA benchmark, indicating the effectiveness of high-quality training data. We also identified a serious issue in the existing evaluation protocol using the GPT-3.5 judge, namely a "sorry" attack, where a sorry-style naive answer can achieve an extremely high rating from the GPT judge, e.g., over 4.3 for correctness score on VideoChatGPT evaluation protocol. To avoid the "sorry" attacks, we evaluate results with GPT-4 judge and keyword filtering. The datasets will be released for academic purposes only.
Abstract:We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several notions of separation of the constituent MDPs. The main thrust of this paper is in establishing a nearly-sharp *statistical threshold* for the horizon length necessary for efficient learning. On the computational side, we show that under a weaker assumption of separability under the optimal policy, there is a quasi-polynomial algorithm with time complexity scaling in terms of the statistical threshold. We further show a near-matching time complexity lower bound under the exponential time hypothesis.