Abstract:Throughout its lifecycle, a large language model (LLM) generates a substantially larger carbon footprint during inference than training. LLM inference requests vary in batch size, prompt length, and token generation number, while cloud providers employ different GPU types and quantities to meet diverse service-level objectives for accuracy and latency. It is crucial for both users and cloud providers to have a tool that quickly and accurately estimates the carbon impact of LLM inferences based on a combination of inference request and hardware configurations before execution. Estimating the carbon footprint of LLM inferences is more complex than training due to lower and highly variable model FLOPS utilization, rendering previous equation-based models inaccurate. Additionally, existing machine learning (ML) prediction methods either lack accuracy or demand extensive training data, as they inadequately handle the distinct prefill and decode phases, overlook hardware-specific features, and inefficiently sample uncommon inference configurations. We introduce \coo, a graph neural network (GNN)-based model that greatly improves the accuracy of LLM inference carbon footprint predictions compared to previous methods.
Abstract:Resistive-random-access-memory (ReRAM) based processing-in-memory (R$^2$PIM) accelerators show promise in bridging the gap between Internet of Thing devices' constrained resources and Convolutional/Deep Neural Networks' (CNNs/DNNs') prohibitive energy cost. Specifically, R$^2$PIM accelerators enhance energy efficiency by eliminating the cost of weight movements and improving the computational density through ReRAM's high density. However, the energy efficiency is still limited by the dominant energy cost of input and partial sum (Psum) movements and the cost of digital-to-analog (D/A) and analog-to-digital (A/D) interfaces. In this work, we identify three energy-saving opportunities in R$^2$PIM accelerators: analog data locality, time-domain interfacing, and input access reduction, and propose an innovative R$^2$PIM accelerator called TIMELY, with three key contributions: (1) TIMELY adopts analog local buffers (ALBs) within ReRAM crossbars to greatly enhance the data locality, minimizing the energy overheads of both input and Psum movements; (2) TIMELY largely reduces the energy of each single D/A (and A/D) conversion and the total number of conversions by using time-domain interfaces (TDIs) and the employed ALBs, respectively; (3) we develop an only-once input read (O$^2$IR) mapping method to further decrease the energy of input accesses and the number of D/A conversions. The evaluation with more than 10 CNN/DNN models and various chip configurations shows that, TIMELY outperforms the baseline R$^2$PIM accelerator, PRIME, by one order of magnitude in energy efficiency while maintaining better computational density (up to 31.2$\times$) and throughput (up to 736.6$\times$). Furthermore, comprehensive studies are performed to evaluate the effectiveness of the proposed ALB, TDI, and O$^2$IR innovations in terms of energy savings and area reduction.
Abstract:One viable solution for continuous reduction in energy-per-operation is to rethink functionality to cope with uncertainty by adopting computational approaches that are inherently robust to uncertainty. It requires a novel look at data representations, associated operations, and circuits, and at materials and substrates that enable them. 3D integrated nanotechnologies combined with novel brain-inspired computational paradigms that support fast learning and fault tolerance could lead the way. Recognizing the very size of the brain's circuits, hyperdimensional (HD) computing can model neural activity patterns with points in a HD space, that is, with hypervectors as large randomly generated patterns. At its very core, HD computing is about manipulating and comparing these patterns inside memory. Emerging nanotechnologies such as carbon nanotube field effect transistors (CNFETs) and resistive RAM (RRAM), and their monolithic 3D integration offer opportunities for hardware implementations of HD computing through tight integration of logic and memory, energy-efficient computation, and unique device characteristics. We experimentally demonstrate and characterize an end-to-end HD computing nanosystem built using monolithic 3D integration of CNFETs and RRAM. With our nanosystem, we experimentally demonstrate classification of 21 languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters), training using one text sample (~100,000 characters) per language, and resilient operation (98% accuracy) despite 78% hardware errors in HD representation (outputs stuck at 0 or 1). By exploiting the unique properties of the underlying nanotechnologies, we show that HD computing, when implemented with monolithic 3D integration, can be up to 420X more energy-efficient while using 25X less area compared to traditional silicon CMOS implementations.