Abstract:This paper presents a reactive planning system that allows a Cassie-series bipedal robot to avoid multiple non-overlapping obstacles via a single, continuously differentiable control barrier function (CBF). The overall system detects an individual obstacle via a height map derived from a LiDAR point cloud and computes an elliptical outer approximation, which is then turned into a CBF. The QP-CLF-CBF formalism developed by Ames et al. is applied to ensure that safe trajectories are generated. Liveness is ensured by an analysis of induced equilibrium points that are distinct from the goal state. Safe planning in environments with multiple obstacles is demonstrated both in simulation and experimentally on the Cassie biped.
Abstract:Considerable progress has recently been made in leveraging CLIP (Contrastive Language-Image Pre-Training) models for text-guided image manipulation. However, all existing works rely on additional generative models to ensure the quality of results, because CLIP alone cannot provide enough guidance information for fine-scale pixel-level changes. In this paper, we introduce CLIPVG, a text-guided image manipulation framework using differentiable vector graphics, which is also the first CLIP-based general image manipulation framework that does not require any additional generative models. We demonstrate that CLIPVG can not only achieve state-of-art performance in both semantic correctness and synthesis quality, but also is flexible enough to support various applications far beyond the capability of all existing methods.