Abstract:We propose NEDS-SLAM, an Explicit Dense semantic SLAM system based on 3D Gaussian representation, that enables robust 3D semantic mapping, accurate camera tracking, and high-quality rendering in real-time. In the system, we propose a Spatially Consistent Feature Fusion model to reduce the effect of erroneous estimates from pre-trained segmentation head on semantic reconstruction, achieving robust 3D semantic Gaussian mapping. Additionally, we employ a lightweight encoder-decoder to compress the high-dimensional semantic features into a compact 3D Gaussian representation, mitigating the burden of excessive memory consumption. Furthermore, we leverage the advantage of 3D Gaussian splatting, which enables efficient and differentiable novel view rendering, and propose a Virtual Camera View Pruning method to eliminate outlier GS points, thereby effectively enhancing the quality of scene representations. Our NEDS-SLAM method demonstrates competitive performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in 3D dense semantic mapping.
Abstract:Intelligent autonomous path planning is crucial to improve the exploration efficiency of planetary rovers. In this paper, we propose a learning-based method to quickly search for optimal paths in an elevation map, which is called NNPP. The NNPP model learns semantic information about start and goal locations, as well as map representations, from numerous pre-annotated optimal path demonstrations, and produces a probabilistic distribution over each pixel representing the likelihood of it belonging to an optimal path on the map. More specifically, the paper computes the traversal cost for each grid cell from the slope, roughness and elevation difference obtained from the DEM. Subsequently, the start and goal locations are encoded using a Gaussian distribution and different location encoding parameters are analyzed for their effect on model performance. After training, the NNPP model is able to perform path planning on novel maps. Experiments show that the guidance field generated by the NNPP model can significantly reduce the search time for optimal paths under the same hardware conditions, and the advantage of NNPP increases with the scale of the map.