Abstract:Reconstructing 3D scenes from a single image is a fundamentally ill-posed task due to the severely under-constrained nature of the problem. Consequently, when the scene is rendered from novel camera views, existing single image to 3D reconstruction methods render incoherent and blurry views. This problem is exacerbated when the unseen regions are far away from the input camera. In this work, we address these inherent limitations in existing single image-to-3D scene feedforward networks. To alleviate the poor performance due to insufficient information beyond the input image's view, we leverage a strong generative prior in the form of a pre-trained latent video diffusion model, for iterative refinement of a coarse scene represented by optimizable Gaussian parameters. To ensure that the style and texture of the generated images align with that of the input image, we incorporate on-the-fly Fourier-style transfer between the generated images and the input image. Additionally, we design a semantic uncertainty quantification module that calculates the per-pixel entropy and yields uncertainty maps used to guide the refinement process from the most confident pixels while discarding the remaining highly uncertain ones. We conduct extensive experiments on real-world scene datasets, including in-domain RealEstate-10K and out-of-domain KITTI-v2, showing that our approach can provide more realistic and high-fidelity novel view synthesis results compared to existing state-of-the-art methods.
Abstract:Scene Graph Generation (SGG) aims to represent visual scenes by identifying objects and their pairwise relationships, providing a structured understanding of image content. However, inherent challenges like long-tailed class distributions and prediction variability necessitate uncertainty quantification in SGG for its practical viability. In this paper, we introduce a novel Conformal Prediction (CP) based framework, adaptive to any existing SGG method, for quantifying their predictive uncertainty by constructing well-calibrated prediction sets over their generated scene graphs. These scene graph prediction sets are designed to achieve statistically rigorous coverage guarantees. Additionally, to ensure these prediction sets contain the most practically interpretable scene graphs, we design an effective MLLM-based post-processing strategy for selecting the most visually and semantically plausible scene graphs within these prediction sets. We show that our proposed approach can produce diverse possible scene graphs from an image, assess the reliability of SGG methods, and improve overall SGG performance.
Abstract:Occlusions are a significant challenge to human pose estimation algorithms, often resulting in inaccurate and anatomically implausible poses. Although current occlusion-robust human pose estimation algorithms exhibit impressive performance on existing datasets, their success is largely attributed to supervised training and the availability of additional information, such as multiple views or temporal continuity. Furthermore, these algorithms typically suffer from performance degradation under distribution shifts. While existing domain adaptive human pose estimation algorithms address this bottleneck, they tend to perform suboptimally when the target domain images are occluded, a common occurrence in real-life scenarios. To address these challenges, we propose OR-POSE: Unsupervised Domain Adaptation for Occlusion Resilient Human POSE Estimation. OR-POSE is an innovative unsupervised domain adaptation algorithm which effectively mitigates domain shifts and overcomes occlusion challenges by employing the mean teacher framework for iterative pseudo-label refinement. Additionally, OR-POSE reinforces realistic pose prediction by leveraging a learned human pose prior which incorporates the anatomical constraints of humans in the adaptation process. Lastly, OR-POSE avoids overfitting to inaccurate pseudo labels generated from heavily occluded images by employing a novel visibility-based curriculum learning approach. This enables the model to gradually transition from training samples with relatively less occlusion to more challenging, heavily occluded samples. Extensive experiments show that OR-POSE outperforms existing analogous state-of-the-art algorithms by $\sim$ 7% on challenging occluded human pose estimation datasets.
Abstract:Classifying player actions from soccer videos is a challenging problem, which has become increasingly important in sports analytics over the years. Most state-of-the-art methods employ highly complex offline networks, which makes it difficult to deploy such models in resource constrained scenarios. Here, in this paper we propose a novel end-to-end knowledge distillation based transfer learning network pre-trained on the Kinetics400 dataset and then perform extensive analysis on the learned framework by introducing a unique loss parameterization. We also introduce a new dataset named SoccerDB1 containing 448 videos and consisting of 4 diverse classes each of players playing soccer. Furthermore, we introduce an unique loss parameter that help us linearly weigh the extent to which the predictions of each network are utilized. Finally, we also perform a thorough performance study using various changed hyperparameters. We also benchmark the first classification results on the new SoccerDB1 dataset obtaining 67.20% validation accuracy. Apart from outperforming prior arts significantly, our model also generalizes to new datasets easily. The dataset has been made publicly available at: https://bit.ly/soccerdb1
Abstract:Lipschitz Bound Estimation is an effective method of regularizing deep neural networks to make them robust against adversarial attacks. This is useful in a variety of applications ranging from reinforcement learning to autonomous systems. In this paper, we highlight the significant gap in obtaining a non-trivial Lipschitz bound certificate for Convolutional Neural Networks (CNNs) and empirically support it with extensive graphical analysis. We also show that unrolling Convolutional layers or Toeplitz matrices can be employed to convert Convolutional Neural Networks (CNNs) to a Fully Connected Network. Further, we propose a simple algorithm to show the existing 20x-50x gap in a particular data distribution between the actual lipschitz constant and the obtained tight bound. We also ran sets of thorough experiments on various network architectures and benchmark them on datasets like MNIST and CIFAR-10. All these proposals are supported by extensive testing, graphs, histograms and comparative analysis.