Abstract:Large language models (LLMs) integrated into multistep agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multistep decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent's reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step's uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.
Abstract:Multimodal learning leverages complementary information derived from different modalities, thereby enhancing performance in medical image segmentation. However, prevailing multimodal learning methods heavily rely on extensive well-annotated data from various modalities to achieve accurate segmentation performance. This dependence often poses a challenge in clinical settings due to limited availability of such data. Moreover, the inherent anatomical misalignment between different imaging modalities further complicates the endeavor to enhance segmentation performance. To address this problem, we propose a novel semi-supervised multimodal segmentation framework that is robust to scarce labeled data and misaligned modalities. Our framework employs a novel cross modality collaboration strategy to distill modality-independent knowledge, which is inherently associated with each modality, and integrates this information into a unified fusion layer for feature amalgamation. With a channel-wise semantic consistency loss, our framework ensures alignment of modality-independent information from a feature-wise perspective across modalities, thereby fortifying it against misalignments in multimodal scenarios. Furthermore, our framework effectively integrates contrastive consistent learning to regulate anatomical structures, facilitating anatomical-wise prediction alignment on unlabeled data in semi-supervised segmentation tasks. Our method achieves competitive performance compared to other multimodal methods across three tasks: cardiac, abdominal multi-organ, and thyroid-associated orbitopathy segmentations. It also demonstrates outstanding robustness in scenarios involving scarce labeled data and misaligned modalities.
Abstract:The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4 and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively.
Abstract:Detecting data points deviating from the training distribution is pivotal for ensuring reliable machine learning. Extensive research has been dedicated to the challenge, spanning classical anomaly detection techniques to contemporary out-of-distribution (OOD) detection approaches. While OOD detection commonly relies on supervised learning from a labeled in-distribution (ID) dataset, anomaly detection may treat the entire ID data as a single class and disregard ID labels. This fundamental distinction raises a significant question that has yet to be rigorously explored: when and how does ID label help OOD detection? This paper bridges this gap by offering a formal understanding to theoretically delineate the impact of ID labels on OOD detection. We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner. Key to our approach is the characterization of data representations through spectral decomposition on the graph. Leveraging these representations, we establish a provable error bound that compares the OOD detection performance with and without ID labels, unveiling conditions for achieving enhanced OOD detection. Lastly, we present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights. Code is publicly available at https://github.com/deeplearning-wisc/id_label.
Abstract:In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs) and revolutionized various fields by providing a few task-relevant demonstrations in the prompt. However, trustworthy issues with LLM's response, such as hallucination, have also been actively discussed. Existing works have been devoted to quantifying the uncertainty in LLM's response, but they often overlook the complex nature of LLMs and the uniqueness of in-context learning. In this work, we delve into the predictive uncertainty of LLMs associated with in-context learning, highlighting that such uncertainties may stem from both the provided demonstrations (aleatoric uncertainty) and ambiguities tied to the model's configurations (epistemic uncertainty). We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties. The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion. Extensive experiments are conducted to demonstrate the effectiveness of the decomposition. The code and data are available at: \url{https://github.com/lingchen0331/UQ_ICL}.
Abstract:This paper introduces the Definite Finite Automaton augmented large language model (DFA-LLM), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach enables the LLM to adhere to a deterministic response pathway, guided by the DFA. The advantages of DFA-LLM include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-LLM's effectiveness, indicating its potential as a valuable contribution to the conversational agent.
Abstract:Machine learning models deployed in the wild can be challenged by out-of-distribution (OOD) data from unknown classes. Recent advances in OOD detection rely on distance measures to distinguish samples that are relatively far away from the in-distribution (ID) data. Despite the promise, distance-based methods can suffer from the curse-of-dimensionality problem, which limits the efficacy in high-dimensional feature space. To combat this problem, we propose a novel framework, Subspace Nearest Neighbor (SNN), for OOD detection. In training, our method regularizes the model and its feature representation by leveraging the most relevant subset of dimensions (i.e. subspace). Subspace learning yields highly distinguishable distance measures between ID and OOD data. We provide comprehensive experiments and ablations to validate the efficacy of SNN. Compared to the current best distance-based method, SNN reduces the average FPR95 by 15.96% on the CIFAR-100 benchmark.
Abstract:Open-world semi-supervised learning aims at inferring both known and novel classes in unlabeled data, by harnessing prior knowledge from a labeled set with known classes. Despite its importance, there is a lack of theoretical foundations for this problem. This paper bridges the gap by formalizing a graph-theoretic framework tailored for the open-world setting, where the clustering can be theoretically characterized by graph factorization. Our graph-theoretic framework illuminates practical algorithms and provides guarantees. In particular, based on our graph formulation, we apply the algorithm called Spectral Open-world Representation Learning (SORL), and show that minimizing our loss is equivalent to performing spectral decomposition on the graph. Such equivalence allows us to derive a provable error bound on the clustering performance for both known and novel classes, and analyze rigorously when labeled data helps. Empirically, SORL can match or outperform several strong baselines on common benchmark datasets, which is appealing for practical usage while enjoying theoretical guarantees.
Abstract:This thesis makes considerable contributions to the realm of machine learning, specifically in the context of open-world scenarios where systems face previously unseen data and contexts. Traditional machine learning models are usually trained and tested within a fixed and known set of classes, a condition known as the closed-world setting. While this assumption works in controlled environments, it falls short in real-world applications where new classes or categories of data can emerge dynamically and unexpectedly. To address this, our research investigates two intertwined steps essential for open-world machine learning: Out-of-distribution (OOD) Detection and Open-world Representation Learning (ORL). OOD detection focuses on identifying instances from unknown classes that fall outside the model's training distribution. This process reduces the risk of making overly confident, erroneous predictions about unfamiliar inputs. Moving beyond OOD detection, ORL extends the capabilities of the model to not only detect unknown instances but also learn from and incorporate knowledge about these new classes. By delving into these research problems of open-world learning, this thesis contributes both algorithmic solutions and theoretical foundations, which pave the way for building machine learning models that are not only performant but also reliable in the face of the evolving complexities of the real world.
Abstract:Utilizing auxiliary outlier datasets to regularize the machine learning model has demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the labor intensity in data collection and cleaning, automating outlier data generation has been a long-desired alternative. Despite the appeal, generating photo-realistic outliers in the high dimensional pixel space has been an open challenge for the field. To tackle the problem, this paper proposes a new framework DREAM-OOD, which enables imagining photo-realistic outliers by way of diffusion models, provided with only the in-distribution (ID) data and classes. Specifically, DREAM-OOD learns a text-conditioned latent space based on ID data, and then samples outliers in the low-likelihood region via the latent, which can be decoded into images by the diffusion model. Different from prior works, DREAM-OOD enables visualizing and understanding the imagined outliers, directly in the pixel space. We conduct comprehensive quantitative and qualitative studies to understand the efficacy of DREAM-OOD, and show that training with the samples generated by DREAM-OOD can benefit OOD detection performance. Code is publicly available at https://github.com/deeplearning-wisc/dream-ood.