Abstract:The typical selective state-space model (SSM) of Mamba addresses several limitations of Transformers, such as quadratic computational complexity with sequence length and significant inference-time memory requirements due to the key-value cache. However, the growing size of Mamba models continues to pose training and deployment challenges and raises environmental concerns due to considerable energy consumption. In this work, we introduce Bi-Mamba, a scalable and powerful 1-bit Mamba architecture designed for more efficient large language models with multiple sizes across 780M, 1.3B, and 2.7B. Bi-Mamba models are trained from scratch on data volume as regular LLM pertaining using an autoregressive distillation loss. Extensive experimental results on language modeling demonstrate that Bi-Mamba achieves performance comparable to its full-precision counterparts (e.g., FP16 or BF16) and much better accuracy than post-training-binarization (PTB) Mamba baselines, while significantly reducing memory footprint and energy consumption compared to the original Mamba model. Our study pioneers a new linear computational complexity LLM framework under low-bit representation and facilitates the future design of specialized hardware tailored for efficient 1-bit Mamba-based LLMs.
Abstract:The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4 and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively.
Abstract:Diffusion models achieve great success in generating diverse and high-fidelity images. The performance improvements come with low generation speed per image, which hinders the application diffusion models in real-time scenarios. While some certain predictions benefit from the full computation of the model in each sample iteration, not every iteration requires the same amount of computation, potentially leading to computation waste. In this work, we propose DeeDiff, an early exiting framework that adaptively allocates computation resources in each sampling step to improve the generation efficiency of diffusion models. Specifically, we introduce a timestep-aware uncertainty estimation module (UEM) for diffusion models which is attached to each intermediate layer to estimate the prediction uncertainty of each layer. The uncertainty is regarded as the signal to decide if the inference terminates. Moreover, we propose uncertainty-aware layer-wise loss to fill the performance gap between full models and early-exited models. With such loss strategy, our model is able to obtain comparable results as full-layer models. Extensive experiments of class-conditional, unconditional, and text-guided generation on several datasets show that our method achieves state-of-the-art performance and efficiency trade-off compared with existing early exiting methods on diffusion models. More importantly, our method even brings extra benefits to baseline models and obtains better performance on CIFAR-10 and Celeb-A datasets. Full code and model are released for reproduction.
Abstract:Large-scale Transformer models bring significant improvements for various downstream vision language tasks with a unified architecture. The performance improvements come with increasing model size, resulting in slow inference speed and increased cost for severing. While some certain predictions benefit from the full complexity of the large-scale model, not all of inputs need the same amount of computation to conduct, potentially leading to computation resource waste. To handle this challenge, early exiting is proposed to adaptively allocate computational power in term of input complexity to improve inference efficiency. The existing early exiting strategies usually adopt output confidence based on intermediate layers as a proxy of input complexity to incur the decision of skipping following layers. However, such strategies cannot apply to encoder in the widely-used unified architecture with both encoder and decoder due to difficulty of output confidence estimation in the encoder. It is suboptimal in term of saving computation power to ignore the early exiting in encoder component. To handle this challenge, we propose a novel early exiting strategy for unified visual language models, which allows dynamically skip the layers in encoder and decoder simultaneously in term of input layer-wise similarities with multiple times of early exiting, namely \textbf{MuE}. By decomposing the image and text modalities in the encoder, MuE is flexible and can skip different layers in term of modalities, advancing the inference efficiency while minimizing performance drop. Experiments on the SNLI-VE and MS COCO datasets show that the proposed approach MuE can reduce expected inference time by up to 50\% and 40\% while maintaining 99\% and 96\% performance respectively.
Abstract:To obtain high-resolution depth maps, some previous learning-based multi-view stereo methods build a cost volume pyramid in a coarse-to-fine manner. These approaches leverage fixed depth range hypotheses to construct cascaded plane sweep volumes. However, it is inappropriate to set identical range hypotheses for each pixel since the uncertainties of previous per-pixel depth predictions are spatially varying. Distinct from these approaches, we propose a Dynamic Depth Range Network (DDR-Net) to determine the depth range hypotheses dynamically by applying a range estimation module (REM) to learn the uncertainties of range hypotheses in the former stages. Specifically, in our DDR-Net, we first build an initial depth map at the coarsest resolution of an image across the entire depth range. Then the range estimation module (REM) leverages the probability distribution information of the initial depth to estimate the depth range hypotheses dynamically for the following stages. Moreover, we develop a novel loss strategy, which utilizes learned dynamic depth ranges to generate refined depth maps, to keep the ground truth value of each pixel covered in the range hypotheses of the next stage. Extensive experimental results show that our method achieves superior performance over other state-of-the-art methods on the DTU benchmark and obtains comparable results on the Tanks and Temples benchmark. The code is available at https://github.com/Tangshengku/DDR-Net.