Abstract:Transformer-based models, such as BERT, have been widely applied in a wide range of natural language processing tasks. However, one inevitable side effect is that they require massive memory storage and inference cost when deployed in production. Quantization is one of the popularized ways to alleviate the cost. However, the previous 8-bit quantization strategy based on INT8 data format either suffers from the degradation of accuracy in a Post-Training Quantization (PTQ) fashion or requires an expensive Quantization-Aware Training (QAT) process. Recently, a new numeric format FP8 (i.e. floating-point of 8-bits) has been proposed and supported in commercial AI computing platforms such as H100. In this paper, we empirically validate the effectiveness of FP8 as a way to do Post-Training Quantization without significant loss of accuracy, with a simple calibration and format conversion process. We adopt the FP8 standard proposed by NVIDIA Corp. (2022) in our extensive experiments of BERT variants on GLUE and SQuAD v1.1 datasets, and show that PTQ with FP8 can significantly improve the accuracy upon that with INT8, to the extent of the full-precision model.
Abstract:Large-scale Transformer models bring significant improvements for various downstream vision language tasks with a unified architecture. The performance improvements come with increasing model size, resulting in slow inference speed and increased cost for severing. While some certain predictions benefit from the full complexity of the large-scale model, not all of inputs need the same amount of computation to conduct, potentially leading to computation resource waste. To handle this challenge, early exiting is proposed to adaptively allocate computational power in term of input complexity to improve inference efficiency. The existing early exiting strategies usually adopt output confidence based on intermediate layers as a proxy of input complexity to incur the decision of skipping following layers. However, such strategies cannot apply to encoder in the widely-used unified architecture with both encoder and decoder due to difficulty of output confidence estimation in the encoder. It is suboptimal in term of saving computation power to ignore the early exiting in encoder component. To handle this challenge, we propose a novel early exiting strategy for unified visual language models, which allows dynamically skip the layers in encoder and decoder simultaneously in term of input layer-wise similarities with multiple times of early exiting, namely \textbf{MuE}. By decomposing the image and text modalities in the encoder, MuE is flexible and can skip different layers in term of modalities, advancing the inference efficiency while minimizing performance drop. Experiments on the SNLI-VE and MS COCO datasets show that the proposed approach MuE can reduce expected inference time by up to 50\% and 40\% while maintaining 99\% and 96\% performance respectively.