Abstract:Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which often already have large weight and activation outlier values that render quantized optimization difficult. We present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, to mitigate outliers during the low-precision computation, 2) FSDP integration for low-precision communication, and 3) high-performance kernel support. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.31x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. Our method supports both standard and parameter-efficient fine-tuning (PEFT) methods, both backed by efficient kernel implementations. Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in FP8 precision, while delivering performance benefits.
Abstract:Quantizing large language models has become a standard way to reduce their memory and computational costs. Typically, existing methods focus on breaking down the problem into individual layer-wise sub-problems, and minimizing per-layer error, measured via various metrics. Yet, this approach currently lacks theoretical justification and the metrics employed may be sub-optimal. In this paper, we present a "linearity theorem" establishing a direct relationship between the layer-wise $\ell_2$ reconstruction error and the model perplexity increase due to quantization. This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, which outperforms all prior data-free approaches such as the extremely popular NF4 quantized format, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels which match a given compression constraint in the medium-bitwidth regime, obtained by reduction to dynamic programming. On the practical side, we demonstrate improved accuracy-compression trade-offs on Llama-3.1 and 3.2-family models, as well as on Qwen-family models. Further, we show that our method can be efficiently supported in terms of GPU kernels at various batch sizes, advancing both data-free and non-uniform quantization for LLMs.
Abstract:Despite the popularity of large language model (LLM) quantization for inference acceleration, significant uncertainty remains regarding the accuracy-performance trade-offs associated with various quantization formats. We present a comprehensive empirical study of quantized accuracy, evaluating popular quantization formats (FP8, INT8, INT4) across academic benchmarks and real-world tasks, on the entire Llama-3.1 model family. Additionally, our study examines the difference in text generated by quantized models versus their uncompressed counterparts. Beyond benchmarks, we also present a couple of quantization improvements which allowed us to obtain state-of-the-art accuracy recovery results. Our investigation, encompassing over 500,000 individual evaluations, yields several key findings: (1) FP8 weight and activation quantization (W8A8-FP) is lossless across all model scales, (2) INT8 weight and activation quantization (W8A8-INT), when properly tuned, incurs surprisingly low 1-3% accuracy degradation, and (3) INT4 weight-only quantization (W4A16-INT) is competitive with 8-bit integer weight and activation quantization. To address the question of the "best" format for a given deployment environment, we conduct inference performance analysis using the popular open-source vLLM framework on various GPU architectures. We find that W4A16 offers the best cost-efficiency for synchronous deployments, and for asynchronous deployment on mid-tier GPUs. At the same time, W8A8 formats excel in asynchronous "continuous batching" deployment of mid- and large-size models on high-end GPUs. Our results provide a set of practical guidelines for deploying quantized LLMs across scales and performance requirements.
Abstract:We introduce LDAdam, a memory-efficient optimizer for training large models, that performs adaptive optimization steps within lower dimensional subspaces, while consistently exploring the full parameter space during training. This strategy keeps the optimizer's memory footprint to a fraction of the model size. LDAdam relies on a new projection-aware update rule for the optimizer states that allows for transitioning between subspaces, i.e., estimation of the statistics of the projected gradients. To mitigate the errors due to low-rank projection, LDAdam integrates a new generalized error feedback mechanism, which explicitly accounts for both gradient and optimizer state compression. We prove the convergence of LDAdam under standard assumptions, and show that LDAdam allows for accurate and efficient fine-tuning and pre-training of language models.
Abstract:The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by \emph{dynamic, non-uniform} compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as \emph{error monotonicity}, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, \emph{error monotonicity does not hold for LLMs}: compressed models with lower sum of per-layer errors can perform \emph{worse} than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
Abstract:We propose Scalable Mechanistic Neural Network (S-MNN), an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences. By reformulating the original Mechanistic Neural Network (MNN) (Pervez et al., 2024), we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear. This significant improvement enables efficient modeling of long-term dynamics without sacrificing accuracy or interpretability. Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources. Consequently, S-MNN can drop-in replace the original MNN in applications, providing a practical and efficient tool for integrating mechanistic bottlenecks into neural network models of complex dynamical systems.
Abstract:Text-to-image diffusion models have emerged as a powerful framework for high-quality image generation given textual prompts. Their success has driven the rapid development of production-grade diffusion models that consistently increase in size and already contain billions of parameters. As a result, state-of-the-art text-to-image models are becoming less accessible in practice, especially in resource-limited environments. Post-training quantization (PTQ) tackles this issue by compressing the pretrained model weights into lower-bit representations. Recent diffusion quantization techniques primarily rely on uniform scalar quantization, providing decent performance for the models compressed to 4 bits. This work demonstrates that more versatile vector quantization (VQ) may achieve higher compression rates for large-scale text-to-image diffusion models. Specifically, we tailor vector-based PTQ methods to recent billion-scale text-to-image models (SDXL and SDXL-Turbo), and show that the diffusion models of 2B+ parameters compressed to around 3 bits using VQ exhibit the similar image quality and textual alignment as previous 4-bit compression techniques.
Abstract:The rising footprint of machine learning has led to a focus on imposing \emph{model sparsity} as a means of reducing computational and memory costs. For deep neural networks (DNNs), the state-of-the-art accuracy-vs-sparsity is achieved by heuristics inspired by the classical Optimal Brain Surgeon (OBS) framework~\citep{lecun90brain, hassibi1992second, hassibi1993optimal}, which leverages loss curvature information to make better pruning decisions. Yet, these results still lack a solid theoretical understanding, and it is unclear whether they can be improved by leveraging connections to the wealth of work on sparse recovery algorithms. In this paper, we draw new connections between these two areas and present new sparse recovery algorithms inspired by the OBS framework that comes with theoretical guarantees under reasonable assumptions and have strong practical performance. Specifically, our work starts from the observation that we can leverage curvature information in OBS-like fashion upon the projection step of classic iterative sparse recovery algorithms such as IHT. We show for the first time that this leads both to improved convergence bounds under standard assumptions. Furthermore, we present extensions of this approach to the practical task of obtaining accurate sparse DNNs, and validate it experimentally at scale for Transformer-based models on vision and language tasks.
Abstract:As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in \emph{batched} settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum ($4\times$) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to $2.8\times$) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
Abstract:We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs), combining ruleset interpretation, planning, and problem-solving. This benchmark is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers, following a simple set of rules. We show that, across leading LLMs, we obtain stable average performance while generating benchmark instances dynamically, following a target difficulty level. Thus, our benchmark alleviates concerns about test-set leakage into training data, an issue that often undermines popular benchmarks. Additionally, we conduct a comprehensive evaluation of both open and closed-source state-of-the-art LLMs on Mathador-LM. Our findings reveal that contemporary models struggle with Mathador-LM, scoring significantly lower than average 5th graders. This stands in stark contrast to their strong performance on popular mathematical reasoning benchmarks.