Abstract:Quantization-aware training (QAT) schemes have been shown to achieve near-full precision accuracy. They accomplish this by training a quantized model for multiple epochs. This is computationally expensive, mainly because of the full precision backward pass. On the other hand, post-training quantization (PTQ) schemes do not involve training and are therefore computationally cheap, but they usually result in a significant accuracy drop. We address these challenges by proposing EfQAT, which generalizes both schemes by optimizing only a subset of the parameters of a quantized model. EfQAT starts by applying a PTQ scheme to a pre-trained model and only updates the most critical network parameters while freezing the rest, accelerating the backward pass. We demonstrate the effectiveness of EfQAT on various CNNs and Transformer-based models using different GPUs. Specifically, we show that EfQAT is significantly more accurate than PTQ with little extra compute. Furthermore, EfQAT can accelerate the QAT backward pass between 1.44-1.64x while retaining most accuracy.
Abstract:With the multitude of pretrained models available thanks to the advancements in large-scale supervised and self-supervised learning, choosing the right model is becoming increasingly pivotal in the machine learning lifecycle. However, much like the training process, choosing the best pretrained off-the-shelf model for raw, unlabeled data is a labor-intensive task. To overcome this, we introduce MODEL SELECTOR, a framework for label-efficient selection of pretrained classifiers. Given a pool of unlabeled target data, MODEL SELECTOR samples a small subset of highly informative examples for labeling, in order to efficiently identify the best pretrained model for deployment on this target dataset. Through extensive experiments, we demonstrate that MODEL SELECTOR drastically reduces the need for labeled data while consistently picking the best or near-best performing model. Across 18 model collections on 16 different datasets, comprising over 1,500 pretrained models, MODEL SELECTOR reduces the labeling cost by up to 94.15% to identify the best model compared to the cost of the strongest baseline. Our results further highlight the robustness of MODEL SELECTOR in model selection, as it reduces the labeling cost by up to 72.41% when selecting a near-best model, whose accuracy is only within 1% of the best model.
Abstract:Foundation Models (FMs) display exceptional performance in tasks such as natural language processing and are being applied across a growing range of disciplines. Although typically trained on large public datasets, FMs are often fine-tuned or integrated into Retrieval-Augmented Generation (RAG) systems, which rely on private data. This access, along with their size and costly training, heightens the risk of intellectual property theft. Moreover, multimodal FMs may expose sensitive information. In this work, we examine the FM threat model and discuss the practicality and comprehensiveness of various approaches for securing against them, such as ML-based methods and trusted execution environments (TEEs). We demonstrate that TEEs offer an effective balance between strong security properties, usability, and performance. Specifically, we present a solution achieving less than 10\% overhead versus bare metal for the full Llama2 7B and 13B inference pipelines running inside \intel\ SGX and \intel\ TDX. We also share our configuration files and insights from our implementation. To our knowledge, our work is the first to show the practicality of TEEs for securing FMs.
Abstract:Multi-GPU nodes are increasingly common in the rapidly evolving landscape of exascale supercomputers. On these systems, GPUs on the same node are connected through dedicated networks, with bandwidths up to a few terabits per second. However, gauging performance expectations and maximizing system efficiency is challenging due to different technologies, design options, and software layers. This paper comprehensively characterizes three supercomputers - Alps, Leonardo, and LUMI - each with a unique architecture and design. We focus on performance evaluation of intra-node and inter-node interconnects on up to 4096 GPUs, using a mix of intra-node and inter-node benchmarks. By analyzing its limitations and opportunities, we aim to offer practical guidance to researchers, system architects, and software developers dealing with multi-GPU supercomputing. Our results show that there is untapped bandwidth, and there are still many opportunities for optimization, ranging from network to software optimization.
Abstract:Knowledge graphs (KGs) have achieved significant attention in recent years, particularly in the area of the Semantic Web as well as gaining popularity in other application domains such as data mining and search engines. Simultaneously, there has been enormous progress in the development of different types of heterogeneous hardware, impacting the way KGs are processed. The aim of this paper is to provide a systematic literature review of knowledge graph hardware acceleration. For this, we present a classification of the primary areas in knowledge graph technology that harnesses different hardware units for accelerating certain knowledge graph functionalities. We then extensively describe respective works, focusing on how KG related schemes harness modern hardware accelerators. Based on our review, we identify various research gaps and future exploratory directions that are anticipated to be of significant value both for academics and industry practitioners.
Abstract:As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in \emph{batched} settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum ($4\times$) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to $2.8\times$) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
Abstract:Higher-order graph neural networks (HOGNNs) are an important class of GNN models that harness polyadic relations between vertices beyond plain edges. They have been used to eliminate issues such as over-smoothing or over-squashing, to significantly enhance the accuracy of GNN predictions, to improve the expressiveness of GNN architectures, and for numerous other goals. A plethora of HOGNN models have been introduced, and they come with diverse neural architectures, and even with different notions of what the "higher-order" means. This richness makes it very challenging to appropriately analyze and compare HOGNN models, and to decide in what scenario to use specific ones. To alleviate this, we first design an in-depth taxonomy and a blueprint for HOGNNs. This facilitates designing models that maximize performance. Then, we use our taxonomy to analyze and compare the available HOGNN models. The outcomes of our analysis are synthesized in a set of insights that help to select the most beneficial GNN model in a given scenario, and a comprehensive list of challenges and opportunities for further research into more powerful HOGNNs.
Abstract:Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.
Abstract:Large Language Models (LLMs) are revolutionizing various domains, yet verifying their answers remains a significant challenge, especially for intricate open-ended tasks such as consolidation, summarization, and extraction of knowledge. In this work, we propose CheckEmbed: an accurate, scalable, and simple LLM verification approach. CheckEmbed is driven by a straightforward yet powerful idea: in order to compare LLM solutions to one another or to the ground-truth, compare their corresponding answer-level embeddings obtained with a model such as GPT Text Embedding Large. This reduces a complex textual answer to a single embedding, facilitating straightforward, fast, and meaningful verification. We develop a comprehensive verification pipeline implementing the CheckEmbed methodology. The CheckEmbed pipeline also comes with metrics for assessing the truthfulness of the LLM answers, such as embedding heatmaps and their summaries. We show how to use these metrics for deploying practical engines that decide whether an LLM answer is satisfactory or not. We apply the pipeline to real-world document analysis tasks, including term extraction and document summarization, showcasing significant improvements in accuracy, cost-effectiveness, and runtime performance compared to existing token-, sentence-, and fact-level schemes such as BERTScore or SelfCheckGPT.
Abstract:We introduce QuaRot, a new Quantization scheme based on Rotations, which is able to quantize LLMs end-to-end, including all weights, activations, and KV cache in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the hidden state without changing the output, making quantization easier. This computational invariance is applied to the hidden state (residual) of the LLM, as well as to the activations of the feed-forward components, aspects of the attention mechanism and to the KV cache. The result is a quantized model where all matrix multiplications are performed in 4-bits, without any channels identified for retention in higher precision. Our quantized LLaMa2-70B model has losses of at most 0.29 WikiText-2 perplexity and retains 99% of the zero-shot performance. Code is available at: https://github.com/spcl/QuaRot.