Abstract:As deep learning models become larger and more expensive, many practitioners turn to fine-tuning APIs. These web services allow fine-tuning a model between two parties: the client that provides the data, and the server that hosts the model. While convenient, these APIs raise a new concern: the data of the client is at risk of privacy breach during the training procedure. This challenge presents an important practical case of vertical federated learning, where the two parties perform parameter-efficient fine-tuning (PEFT) of a large model. In this study, we systematically search for a way to fine-tune models over an API while keeping the labels private. We analyze the privacy of LoRA, a popular approach for parameter-efficient fine-tuning when training over an API. Using this analysis, we propose P$^3$EFT, a multi-party split learning algorithm that takes advantage of existing PEFT properties to maintain privacy at a lower performance overhead. To validate our algorithm, we fine-tune DeBERTa-v2-XXLarge, Flan-T5 Large and LLaMA-2 7B using LoRA adapters on a range of NLP tasks. We find that P$^3$EFT is competitive with existing privacy-preserving methods in multi-party and two-party setups while having higher accuracy.
Abstract:This work presents Switti, a scale-wise transformer for text-to-image generation. Starting from existing next-scale prediction AR models, we first explore them for T2I generation and propose architectural modifications to improve their convergence and overall performance. We then observe that self-attention maps of our pretrained scale-wise AR model exhibit weak dependence on preceding scales. Based on this insight, we propose a non-AR counterpart facilitating ~11% faster sampling and lower memory usage while also achieving slightly better generation quality. Furthermore, we reveal that classifier-free guidance at high-resolution scales is often unnecessary and can even degrade performance. By disabling guidance at these scales, we achieve an additional sampling acceleration of ~20% and improve the generation of fine-grained details. Extensive human preference studies and automated evaluations show that Switti outperforms existing T2I AR models and competes with state-of-the-art T2I diffusion models while being up to 7 times faster.
Abstract:The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by \emph{dynamic, non-uniform} compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as \emph{error monotonicity}, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, \emph{error monotonicity does not hold for LLMs}: compressed models with lower sum of per-layer errors can perform \emph{worse} than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
Abstract:Text-to-image diffusion models have emerged as a powerful framework for high-quality image generation given textual prompts. Their success has driven the rapid development of production-grade diffusion models that consistently increase in size and already contain billions of parameters. As a result, state-of-the-art text-to-image models are becoming less accessible in practice, especially in resource-limited environments. Post-training quantization (PTQ) tackles this issue by compressing the pretrained model weights into lower-bit representations. Recent diffusion quantization techniques primarily rely on uniform scalar quantization, providing decent performance for the models compressed to 4 bits. This work demonstrates that more versatile vector quantization (VQ) may achieve higher compression rates for large-scale text-to-image diffusion models. Specifically, we tailor vector-based PTQ methods to recent billion-scale text-to-image models (SDXL and SDXL-Turbo), and show that the diffusion models of 2B+ parameters compressed to around 3 bits using VQ exhibit the similar image quality and textual alignment as previous 4-bit compression techniques.
Abstract:The rising footprint of machine learning has led to a focus on imposing \emph{model sparsity} as a means of reducing computational and memory costs. For deep neural networks (DNNs), the state-of-the-art accuracy-vs-sparsity is achieved by heuristics inspired by the classical Optimal Brain Surgeon (OBS) framework~\citep{lecun90brain, hassibi1992second, hassibi1993optimal}, which leverages loss curvature information to make better pruning decisions. Yet, these results still lack a solid theoretical understanding, and it is unclear whether they can be improved by leveraging connections to the wealth of work on sparse recovery algorithms. In this paper, we draw new connections between these two areas and present new sparse recovery algorithms inspired by the OBS framework that comes with theoretical guarantees under reasonable assumptions and have strong practical performance. Specifically, our work starts from the observation that we can leverage curvature information in OBS-like fashion upon the projection step of classic iterative sparse recovery algorithms such as IHT. We show for the first time that this leads both to improved convergence bounds under standard assumptions. Furthermore, we present extensions of this approach to the practical task of obtaining accurate sparse DNNs, and validate it experimentally at scale for Transformer-based models on vision and language tasks.
Abstract:There is a prevalent opinion in the recent literature that Diffusion-based models outperform GAN-based counterparts on the Image Super Resolution (ISR) problem. However, in most studies, Diffusion-based ISR models were trained longer and utilized larger networks than the GAN baselines. This raises the question of whether the superiority of Diffusion models is due to the Diffusion paradigm being better suited for the ISR task or if it is a consequence of the increased scale and computational resources used in contemporary studies. In our work, we compare Diffusion-based and GAN-based Super Resolution under controlled settings, where both approaches are matched in terms of architecture, model and dataset size, and computational budget. We show that a GAN-based model can achieve results comparable to a Diffusion-based model. Additionally, we explore the impact of design choices such as text conditioning and augmentation on the performance of ISR models, showcasing their effect on several downstream tasks. We will release the inference code and weights of our scaled GAN.
Abstract:There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.
Abstract:In the rapidly progressing field of generative models, the development of efficient and high-fidelity text-to-image diffusion systems represents a significant frontier. This study introduces YaART, a novel production-grade text-to-image cascaded diffusion model aligned to human preferences using Reinforcement Learning from Human Feedback (RLHF). During the development of YaART, we especially focus on the choices of the model and training dataset sizes, the aspects that were not systematically investigated for text-to-image cascaded diffusion models before. In particular, we comprehensively analyze how these choices affect both the efficiency of the training process and the quality of the generated images, which are highly important in practice. Furthermore, we demonstrate that models trained on smaller datasets of higher-quality images can successfully compete with those trained on larger datasets, establishing a more efficient scenario of diffusion models training. From the quality perspective, YaART is consistently preferred by users over many existing state-of-the-art models.
Abstract:The emergence of accurate open large language models (LLMs) has led to a race towards quantization techniques for such models enabling execution on end-user devices. In this paper, we revisit the problem of "extreme" LLM compression--defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter, from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our work builds on top of Additive Quantization, a classic algorithm from the MCQ family, and adapts it to the quantization of language models. The resulting algorithm advances the state-of-the-art in LLM compression, outperforming all recently-proposed techniques in terms of accuracy at a given compression budget. For instance, when compressing Llama 2 models to 2 bits per parameter, our algorithm quantizes the 7B model to 6.93 perplexity (a 1.29 improvement relative to the best prior work, and 1.81 points from FP16), the 13B model to 5.70 perplexity (a .36 improvement) and the 70B model to 3.94 perplexity (a .22 improvement) on WikiText2. We release our implementation of Additive Quantization for Language Models AQLM as a baseline to facilitate future research in LLM quantization.
Abstract:We consider the problem of accurate sparse fine-tuning of large language models (LLMs), that is, fine-tuning pretrained LLMs on specialized tasks, while inducing sparsity in their weights. On the accuracy side, we observe that standard loss-based fine-tuning may fail to recover accuracy, especially at high sparsities. To address this, we perform a detailed study of distillation-type losses, determining an L2-based distillation approach we term SquareHead which enables accurate recovery even at higher sparsities, across all model types. On the practical efficiency side, we show that sparse LLMs can be executed with speedups by taking advantage of sparsity, for both CPU and GPU runtimes. While the standard approach is to leverage sparsity for computational reduction, we observe that in the case of memory-bound LLMs sparsity can also be leveraged for reducing memory bandwidth. We exhibit end-to-end results showing speedups due to sparsity, while recovering accuracy, on T5 (language translation), Whisper (speech translation), and open GPT-type (MPT for text generation). For MPT text generation, we show for the first time that sparse fine-tuning can reach 75% sparsity without accuracy drops, provide notable end-to-end speedups for both CPU and GPU inference, and highlight that sparsity is also compatible with quantization approaches. Models and software for reproducing our results are provided in Section 6.