Abstract:As deep learning models become larger and more expensive, many practitioners turn to fine-tuning APIs. These web services allow fine-tuning a model between two parties: the client that provides the data, and the server that hosts the model. While convenient, these APIs raise a new concern: the data of the client is at risk of privacy breach during the training procedure. This challenge presents an important practical case of vertical federated learning, where the two parties perform parameter-efficient fine-tuning (PEFT) of a large model. In this study, we systematically search for a way to fine-tune models over an API while keeping the labels private. We analyze the privacy of LoRA, a popular approach for parameter-efficient fine-tuning when training over an API. Using this analysis, we propose P$^3$EFT, a multi-party split learning algorithm that takes advantage of existing PEFT properties to maintain privacy at a lower performance overhead. To validate our algorithm, we fine-tune DeBERTa-v2-XXLarge, Flan-T5 Large and LLaMA-2 7B using LoRA adapters on a range of NLP tasks. We find that P$^3$EFT is competitive with existing privacy-preserving methods in multi-party and two-party setups while having higher accuracy.
Abstract:Vertical Federated Learning (VFL) aims to enable collaborative training of deep learning models while maintaining privacy protection. However, the VFL procedure still has components that are vulnerable to attacks by malicious parties. In our work, we consider feature reconstruction attacks, a common risk targeting input data compromise. We theoretically claim that feature reconstruction attacks cannot succeed without knowledge of the prior distribution on data. Consequently, we demonstrate that even simple model architecture transformations can significantly impact the protection of input data during VFL. Confirming these findings with experimental results, we show that MLP-based models are resistant to state-of-the-art feature reconstruction attacks.
Abstract:With the increase in the number of parameters in large language models, the process of pre-training and fine-tuning increasingly demands larger volumes of GPU memory. A significant portion of this memory is typically consumed by the optimizer state. To overcome this challenge, recent approaches such as low-rank adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao et al., 2024)), and blockwise optimization (BAdam (Luo et al., 2024)) have been proposed. However, in all these algorithms, the $\textit{effective rank of the weight updates remains low-rank}$, which can lead to a substantial loss of information from the gradient. This loss can be critically important, especially during the pre-training stage. In this paper, we introduce $\texttt{FRUGAL}$ ($\textbf{F}$ull-$\textbf{R}$ank $\textbf{U}$pdates with $\textbf{G}$r$\textbf{A}$dient sp$\textbf{L}$itting), a new memory-efficient optimization framework. $\texttt{FRUGAL}$ leverages gradient splitting to perform low-dimensional updates using advanced algorithms (such as Adam), while updates along the remaining directions are executed via state-free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be integrated with various low-rank update selection techniques, including GaLore and BAdam. We provide theoretical convergence guarantees for our framework when using SGDM for low-dimensional updates and SGD for state-free updates. Additionally, our method consistently outperforms concurrent approaches across various fixed memory budgets, achieving state-of-the-art results in pre-training and fine-tuning tasks while balancing memory efficiency and performance metrics.