Abstract:Multiple-choice questions (MCQ) are frequently used to assess large language models (LLMs). Typically, an LLM is given a question and selects the answer deemed most probable after adjustments for factors like length. Unfortunately, LLMs may inherently favor certain answer choice IDs, such as A/B/C/D, due to inherent biases of priori unbalanced probabilities, influencing the prediction of answers based on these IDs. Previous research has introduced methods to reduce this ''selection bias'' by simply permutating options on a few test samples and applying to new ones. Another problem of MCQ is the lottery ticket choice by ''random guessing''. The LLM does not learn particular knowledge, but the option is guessed correctly. This situation is especially serious for those small-scale LLMs. To address them, a more thorough approach involves shifting from MCQ to open-style questions, which can fundamentally eliminate selection bias and random guessing issues. However, transitioning causes its own set of challenges in (1) identifying suitable open-style questions and (2) validating the correctness of LLM open-style responses against human-annotated ground-truths. This work aims to tackle these significant difficulties, and establish a new LLM evaluation benchmark through entirely open-style questions. Consequently, we introduce the Open-LLM-Leaderboard to track various LLMs' performance and reflect true capability of them, such as GPT-4o/4/3.5, Claude 3, Gemini, etc. Our code and dataset are available at https://github.com/VILA-Lab/Open-LLM-Leaderboard.
Abstract:This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work provides a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.