Abstract:Large Language Models (LLMs) have shown remarkable capabilities in natural language processing but exhibit significant performance gaps among different languages. Most existing approaches to address these disparities rely on pretraining or fine-tuning, which are resource-intensive. To overcome these limitations without incurring significant costs, we propose Inference-Time Cross-Lingual Intervention (INCLINE), a novel framework that enhances LLM performance on low-performing (source) languages by aligning their internal representations with those of high-performing (target) languages during inference. INCLINE initially learns alignment matrices using parallel sentences from source and target languages through a Least-Squares optimization, and then applies these matrices during inference to transform the low-performing language representations toward the high-performing language space. Extensive experiments on nine benchmarks with five LLMs demonstrate that INCLINE significantly improves performance across diverse tasks and languages, compared to recent strong baselines. Our analysis demonstrates that INCLINE is highly cost-effective and applicable to a wide range of applications. In addition, we release the code to foster research along this line: https://github.com/weixuan-wang123/INCLINE.
Abstract:The quality of open-weight LLMs has seen significant improvement, yet they remain predominantly focused on English. In this paper, we introduce the EuroLLM project, aimed at developing a suite of open-weight multilingual LLMs capable of understanding and generating text in all official European Union languages, as well as several additional relevant languages. We outline the progress made to date, detailing our data collection and filtering process, the development of scaling laws, the creation of our multilingual tokenizer, and the data mix and modeling configurations. Additionally, we release our initial models: EuroLLM-1.7B and EuroLLM-1.7B-Instruct and report their performance on multilingual general benchmarks and machine translation.
Abstract:Machine Translation of Culture-Specific Items (CSIs) poses significant challenges. Recent work on CSI translation has shown some success using Large Language Models (LLMs) to adapt to different languages and cultures; however, a deeper analysis is needed to examine the benefits and pitfalls of each method. In this paper, we introduce the ChineseMenuCSI dataset, the largest for Chinese-English menu corpora, annotated with CSI vs Non-CSI labels and a fine-grained test set. We define three levels of CSI figurativeness for a more nuanced analysis and develop a novel methodology for automatic CSI identification, which outperforms GPT-based prompts in most categories. Importantly, we are the first to integrate human translation theories into LLM-driven translation processes, significantly improving translation accuracy, with COMET scores increasing by up to 7 points.
Abstract:Despite the recent popularity of Large Language Models (LLMs) in Machine Translation (MT), their performance in low-resource translation still lags significantly behind Neural Machine Translation (NMT) models. In this paper, we explore what it would take to adapt LLMs for low-resource settings. In particular, we re-examine the role of two factors: a) the importance and application of parallel data, and b) diversity in Supervised Fine-Tuning (SFT). Recently, parallel data has been shown to be less important for MT using LLMs than in previous MT research. Similarly, diversity during SFT has been shown to promote significant transfer in LLMs across languages and tasks. However, for low-resource LLM-MT, we show that the opposite is true for both of these considerations: a) parallel data is critical during both pretraining and SFT, and b) diversity tends to cause interference, not transfer. Our experiments, conducted with 3 LLMs across 2 low-resourced language groups - indigenous American and North-East Indian - reveal consistent patterns in both cases, underscoring the generalizability of our findings. We believe these insights will be valuable for scaling to massively multilingual LLM-MT models that can effectively serve lower-resource languages.
Abstract:Multilingual large language models (LLMs) have greatly increased the ceiling of performance on non-English tasks. However the mechanisms behind multilingualism in these LLMs are poorly understood. Of particular interest is the degree to which internal representations are shared between languages. Recent work on neuron analysis of LLMs has focused on the monolingual case, and the limited work on the multilingual case has not considered the interaction between tasks and linguistic representations. In our work, we investigate how neuron activation is shared across languages by categorizing neurons into four distinct groups according to their responses across different languages for a particular input: all-shared, partial-shared, specific, and non-activated. This categorization is combined with a study of neuron attribution, i.e. the importance of a neuron w.r.t an output. Our analysis reveals the following insights: (i) the linguistic sharing patterns are strongly affected by the type of task, but neuron behaviour changes across different inputs even for the same task; (ii) all-shared neurons play a key role in generating correct responses; (iii) boosting multilingual alignment by increasing all-shared neurons can enhance accuracy on multilingual tasks. The code is available at https://github.com/weixuan-wang123/multilingual-neurons.
Abstract:Researchers and practitioners operating on a limited budget face the cost-performance trade-off dilemma. The challenging decision often centers on whether to use a large LLM with better performance or a smaller one with reduced costs. This has motivated recent research in the optimisation of LLM calls. Either a cascading strategy is used, where a smaller LLM or both are called sequentially, or a routing strategy is used, where only one model is ever called. Both scenarios are dependent on a decision criterion which is typically implemented by an extra neural model. In this work, we propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion. We compare our approach with both cascading and routing strategies using three different pairs of pre-trained small and large LLMs, on nine different tasks and against approaches that require an additional neural model. Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
Abstract:Bridging the significant gap between large language model's English and non-English performance presents a great challenge. While some previous studies attempt to mitigate this gap with translated training data, the recently proposed question alignment approach leverages the model's English expertise to improve multilingual performance with minimum usage of expensive, error-prone translation. In this paper, we explore how broadly this method can be applied by examining its effects in reasoning with executable code and reasoning with common sense. We also explore how to apply this approach efficiently to extremely large language models using proxy-tuning. Experiment results on multilingual reasoning benchmarks mGSM, mSVAMP and xCSQA demonstrate that the question alignment approach can be used to boost multilingual performance across diverse reasoning scenarios, model families, and sizes. For instance, when applied to the LLaMA2 models, our method brings an average accuracy improvements of 12.2% on mGSM even with the 70B model. To understand the mechanism of its success, we analyze representation space, chain-of-thought and translation data scales, which reveals how question translation training strengthens language alignment within LLMs and shapes their working patterns.
Abstract:Modular deep learning is the state-of-the-art solution for lifting the curse of multilinguality, preventing the impact of negative interference and enabling cross-lingual performance in Multilingual Pre-trained Language Models. However, a trade-off of this approach is the reduction in positive transfer learning from closely related languages. In response, we introduce a novel method called language arithmetic, which enables training-free post-processing to address this limitation. Inspired by the task arithmetic framework, we apply learning via addition to the language adapters, transitioning the framework from a multi-task to a multilingual setup. The effectiveness of the proposed solution is demonstrated on three downstream tasks in a MAD-X-based set of cross-lingual schemes, acting as a post-processing procedure. Language arithmetic consistently improves the baselines with significant gains in the most challenging cases of zero-shot and low-resource applications. Our code and models are available at https://github.com/mklimasz/language-arithmetic .
Abstract:The rise of Modular Deep Learning showcases its potential in various Natural Language Processing applications. Parameter-efficient fine-tuning (PEFT) modularity has been shown to work for various use cases, from domain adaptation to multilingual setups. However, all this work covers the case where the modular components are trained and deployed within one single Pre-trained Language Model (PLM). This model-specific setup is a substantial limitation on the very modularity that modular architectures are trying to achieve. We ask whether current modular approaches are transferable between models and whether we can transfer the modules from more robust and larger PLMs to smaller ones. In this work, we aim to fill this gap via a lens of Knowledge Distillation, commonly used for model compression, and present an extremely straightforward approach to transferring pre-trained, task-specific PEFT modules between same-family PLMs. Moreover, we propose a method that allows the transfer of modules between incompatible PLMs without any change in the inference complexity. The experiments on Named Entity Recognition, Natural Language Inference, and Paraphrase Identification tasks over multiple languages and PEFT methods showcase the initial potential of transferable modularity.
Abstract:Using Self-Supervised Learning (SSL) as model initialization is now common to obtain strong results in Speech Translation (ST). However, they also impose a large memory footprint, hindering on-device deployment. In this paper, we leverage the SSL models by pretraining smaller models on their Discrete Speech Units (DSU). We pretrain encoder-decoder models on 1) Filterbank-to-DSU and 2) DSU-to-Translation data, and take the encoder from 1) and the decoder from 2) to initialise a new model, finetuning this on limited speech-translation data. The final model becomes compact by using the DSU pretraining to distil the knowledge of the SSL model. Our method has several benefits over using DSU as model inputs, such as shorter inference pipeline and robustness over (DSU) tokenization. In contrast to ASR pretraining, it does not require transcripts, making it applicable to low-resource settings. Evaluation on CoVoST-2 X-En shows that our method is >$0.5$ BLEU better than a ST model that directly finetune the SSL model, given only half the model size, and on a par with ASR pretraining.