Abstract:Despite their impressive capabilities, large language models (LLMs) often lack interpretability and can generate toxic content. While using LLMs as foundation models and applying semantic steering methods are widely practiced, we believe that efficient methods should be based on a thorough understanding of LLM behavior. To this end, we propose using eye movement measures to interpret LLM behavior across layers. We find that LLMs exhibit patterns similar to human gaze across layers and different layers function differently. Inspired by these findings, we introduce a heuristic steering layer selection and apply it to layer intervention methods via fine-tuning and inference. Using language toxification and detoxification as test beds, we demonstrate that our proposed CogSteer methods achieve better results in terms of toxicity scores while efficiently saving 97% of the computational resources and 60% of the training time. Our model-agnostic approach can be adopted into various LLMs, contributing to their interpretability and promoting trustworthiness for safe deployment.
Abstract:Large Vision-Language Models (LVLMs) are increasingly adept at generating contextually detailed and coherent responses from visual inputs. However, their application in multimodal decision-making and open-ended generation is hindered by a notable rate of hallucinations, where generated text inaccurately represents the visual contents. To address this issue, this paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference. Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules. ICD contrasts distributions from standard and instruction disturbance, thereby increasing alignment uncertainty and effectively subtracting hallucinated concepts from the original distribution. Through comprehensive experiments on discriminative benchmarks (POPE and MME) and a generative benchmark (LLaVa-Bench), we demonstrate that ICD significantly mitigates both object-level and attribute-level hallucinations. Moreover, our method not only addresses hallucinations but also significantly enhances the general perception and recognition capabilities of LVLMs.