Abstract:Dense retrievers are widely used in information retrieval and have also been successfully extended to other knowledge intensive areas such as language models, e.g., Retrieval-Augmented Generation (RAG) systems. Unfortunately, they have recently been shown to be vulnerable to corpus poisoning attacks in which a malicious user injects a small fraction of adversarial passages into the retrieval corpus to trick the system into returning these passages among the top-ranked results for a broad set of user queries. Further study is needed to understand the extent to which these attacks could limit the deployment of dense retrievers in real-world applications. In this work, we propose Approximate Greedy Gradient Descent (AGGD), a new attack on dense retrieval systems based on the widely used HotFlip method for efficiently generating adversarial passages. We demonstrate that AGGD can select a higher quality set of token-level perturbations than HotFlip by replacing its random token sampling with a more structured search. Experimentally, we show that our method achieves a high attack success rate on several datasets and using several retrievers, and can generalize to unseen queries and new domains. Notably, our method is extremely effective in attacking the ANCE retrieval model, achieving attack success rates that are 17.6\% and 13.37\% higher on the NQ and MS MARCO datasets, respectively, compared to HotFlip. Additionally, we demonstrate AGGD's potential to replace HotFlip in other adversarial attacks, such as knowledge poisoning of RAG systems.\footnote{Code can be find in \url{https://github.com/JinyanSu1/AGGD}}
Abstract:In digital markets comprised of many competing services, each user chooses between multiple service providers according to their preferences, and the chosen service makes use of the user data to incrementally improve its model. The service providers' models influence which service the user will choose at the next time step, and the user's choice, in return, influences the model update, leading to a feedback loop. In this paper, we formalize the above dynamics and develop a simple and efficient decentralized algorithm to locally minimize the overall user loss. Theoretically, we show that our algorithm asymptotically converges to stationary points of of the overall loss almost surely. We also experimentally demonstrate the utility of our algorithm with real world data.
Abstract:We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
Abstract:The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark involving multilingual, multi-domain and multi-generator for MGT detection -- M4GT-Bench. It is collected for three task formulations: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection identifies which particular model generates the text; and (3) human-machine mixed text detection, where a word boundary delimiting MGT from human-written content should be determined. Human evaluation for Task 2 shows less than random guess performance, demonstrating the challenges to distinguish unique LLMs. Promising results always occur when training and test data distribute within the same domain or generators.
Abstract:Prompted weak supervision (PromptedWS) applies pre-trained large language models (LLMs) as the basis for labeling functions (LFs) in a weak supervision framework to obtain large labeled datasets. We further extend the use of LLMs in the loop to address one of the key challenges in weak supervision: learning the statistical dependency structure among supervision sources. In this work, we ask the LLM how similar are these prompted LFs. We propose a Structure Refining Module, a simple yet effective first approach based on the similarities of the prompts by taking advantage of the intrinsic structure in the embedding space. At the core of Structure Refining Module are Labeling Function Removal (LaRe) and Correlation Structure Generation (CosGen). Compared to previous methods that learn the dependencies from weak labels, our method finds the dependencies which are intrinsic to the LFs and less dependent on the data. We show that our Structure Refining Module improves the PromptedWS pipeline by up to 12.7 points on the benchmark tasks. We also explore the trade-offs between efficiency and performance with comprehensive ablation experiments and analysis. Code for this project can be found in https://github.com/BatsResearch/su-bigdata23-code.
Abstract:In the age of large language models (LLMs) and the widespread adoption of AI-driven content creation, the landscape of information dissemination has witnessed a paradigm shift. With the proliferation of both human-written and machine-generated real and fake news, robustly and effectively discerning the veracity of news articles has become an intricate challenge. While substantial research has been dedicated to fake news detection, this either assumes that all news articles are human-written or abruptly assumes that all machine-generated news are fake. Thus, a significant gap exists in understanding the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news. In this paper, we study this gap by conducting a comprehensive evaluation of fake news detectors trained in various scenarios. Our primary objectives revolve around the following pivotal question: How to adapt fake news detectors to the era of LLMs? Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa. Moreover, due to the bias of detectors against machine-generated texts \cite{su2023fake}, they should be trained on datasets with a lower machine-generated news ratio than the test set. Building on our findings, we provide a practical strategy for the development of robust fake news detectors.
Abstract:The spread of fake news has emerged as a critical challenge, undermining trust and posing threats to society. In the era of Large Language Models (LLMs), the capability to generate believable fake content has intensified these concerns. In this study, we present a novel paradigm to evaluate fake news detectors in scenarios involving both human-written and LLM-generated misinformation. Intriguingly, our findings reveal a significant bias in many existing detectors: they are more prone to flagging LLM-generated content as fake news while often misclassifying human-written fake news as genuine. This unexpected bias appears to arise from distinct linguistic patterns inherent to LLM outputs. To address this, we introduce a mitigation strategy that leverages adversarial training with LLM-paraphrased genuine news. The resulting model yielded marked improvements in detection accuracy for both human and LLM-generated news. To further catalyze research in this domain, we release two comprehensive datasets, \texttt{GossipCop++} and \texttt{PolitiFact++}, thus amalgamating human-validated articles with LLM-generated fake and real news.
Abstract:Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries, but this has also resulted in concerns regarding the potential misuse of such texts in journalism, educational, and academic context. In this work, we aim to develop automatic systems to identify machine-generated text and to detect potential misuse. We first introduce a large-scale benchmark M4, which is multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Using the dataset, we experiment with a number of methods and we show that it is challenging for detectors to generalize well on unseen examples if they are either from different domains or are generated by different large language models. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and there is a lot of room for improvement. We believe that our dataset M4, which covers different generators, domains and languages, will enable future research towards more robust approaches for this pressing societal problem. The M4 dataset is available at https://github.com/mbzuai-nlp/M4.
Abstract:In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) in Euclidean and general $\ell_p^d$ spaces. Specifically, we focus on three settings that are still far from well understood: (1) DP-SCO over a constrained and bounded (convex) set in Euclidean space; (2) unconstrained DP-SCO in $\ell_p^d$ space; (3) DP-SCO with heavy-tailed data over a constrained and bounded set in $\ell_p^d$ space. For problem (1), for both convex and strongly convex loss functions, we propose methods whose outputs could achieve (expected) excess population risks that are only dependent on the Gaussian width of the constraint set rather than the dimension of the space. Moreover, we also show the bound for strongly convex functions is optimal up to a logarithmic factor. For problems (2) and (3), we propose several novel algorithms and provide the first theoretical results for both cases when $1<p<2$ and $2\leq p\leq \infty$.
Abstract:In this paper, we study the problem of PAC learning halfspaces in the non-interactive local differential privacy model (NLDP). To breach the barrier of exponential sample complexity, previous results studied a relaxed setting where the server has access to some additional public but unlabeled data. We continue in this direction. Specifically, we consider the problem under the standard setting instead of the large margin setting studied before. Under different mild assumptions on the underlying data distribution, we propose two approaches that are based on the Massart noise model and self-supervised learning and show that it is possible to achieve sample complexities that are only linear in the dimension and polynomial in other terms for both private and public data, which significantly improve the previous results. Our methods could also be used for other private PAC learning problems.