Adobe
Abstract:Automatic generation of graphical layouts is crucial for many real-world applications, including designing posters, flyers, advertisements, and graphical user interfaces. Given the incredible ability of Large language models (LLMs) in both natural language understanding and generation, we believe that we could customize an LLM to help people create compelling graphical layouts starting with only text instructions from the user. We call our method TextLap (text-based layout planning). It uses a curated instruction-based layout planning dataset (InsLap) to customize LLMs as a graphic designer. We demonstrate the effectiveness of TextLap and show that it outperforms strong baselines, including GPT-4 based methods, for image generation and graphical design benchmarks.
Abstract:Pre-trained large language models (LLMs) can now be easily adapted for specific business purposes using custom prompts or fine tuning. These customizations are often iteratively re-engineered to improve some aspect of performance, but after each change businesses want to ensure that there has been no negative impact on the system's behavior around such critical issues as bias. Prior methods of benchmarking bias use techniques such as word masking and multiple choice questions to assess bias at scale, but these do not capture all of the nuanced types of bias that can occur in free response answers, the types of answers typically generated by LLM systems. In this paper, we identify several kinds of nuanced bias in free text that cannot be similarly identified by multiple choice tests. We describe these as: confidence bias, implied bias, inclusion bias and erasure bias. We present a semi-automated pipeline for detecting these types of bias by first eliminating answers that can be automatically classified as unbiased and then co-evaluating name reversed pairs using crowd workers. We believe that the nuanced classifications our method generates can be used to give better feedback to LLMs, especially as LLM reasoning capabilities become more advanced.
Abstract:Recent advancements in instruction-following models have made user interactions with models more user-friendly and efficient, broadening their applicability. In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources. In this work, we introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts by specifying canvas size and design purpose, such as for book covers, posters, brochures, or menus. We developed three layout reasoning tasks to train the model in understanding and executing layout instructions. Experiments on two benchmarks show that our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello. This progress highlights the potential of multimodal instruction-following models to automate and simplify the design process, providing an approachable solution for a wide range of design tasks on visually-rich documents.
Abstract:Based on recent advances in realistic language modeling (GPT-3) and cross-modal representations (CLIP), Gaud\'i was developed to help designers search for inspirational images using natural language. In the early stages of the design process, with the goal of eliciting a client's preferred creative direction, designers will typically create thematic collections of inspirational images called "mood-boards". Creating a mood-board involves sequential image searches which are currently performed using keywords or images. Gaud\'i transforms this process into a conversation where the user is gradually detailing the mood-board's theme. This representation allows our AI to generate new search queries from scratch, straight from a project briefing, following a theme hypothesized by GPT-3. Compared to previous computational approaches to mood-board creation, to the best of our knowledge, ours is the first attempt to represent mood-boards as the stories that designers tell when presenting a creative direction to a client.
Abstract:Many real-world applications require aligning two temporal sequences, including bioinformatics, handwriting recognition, activity recognition, and human-robot coordination. Dynamic Time Warping (DTW) is a popular alignment method, but can fail on high-dimensional real-world data where the dimensions of aligned sequences are often unequal. In this paper, we show that exploiting the multiscale manifold latent structure of real-world data can yield improved alignment. We introduce a novel framework called Warping on Wavelets (WOW) that integrates DTW with a a multi-scale manifold learning framework called Diffusion Wavelets. We present a theoretical analysis of the WOW family of algorithms and show that it outperforms previous state of the art methods, such as canonical time warping (CTW) and manifold warping, on several real-world datasets.
Abstract:Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., "It doesn't look good for a date"), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., "I prefer more romantic") in order to retrieve reviews pertaining to potentially better recommendations (e.g., "Perfect for a romantic dinner"). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.
Abstract:We have developed a conversational recommendation system designed to help users navigate through a set of limited options to find the best choice. Unlike many internet scale systems that use a singular set of search terms and return a ranked list of options from amongst thousands, our system uses multi-turn user dialog to deeply understand the users preferences. The system responds in context to the users specific and immediate feedback to make sequential recommendations. We envision our system would be highly useful in situations with intrinsic constraints, such as finding the right restaurant within walking distance or the right retail item within a limited inventory. Our research prototype instantiates the former use case, leveraging real data from Google Places, Yelp, and Zomato. We evaluated our system against a similar system that did not incorporate user feedback in a 16 person remote study, generating 64 scenario-based search journeys. When our recommendation system was successfully triggered, we saw both an increase in efficiency and a higher confidence rating with respect to final user choice. We also found that users preferred our system (75%) compared with the baseline.