Abstract:Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Abstract:Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: https://github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
Abstract:Large multimodal language models have demonstrated impressive capabilities in understanding and manipulating images. However, many of these models struggle with comprehending intensive textual contents embedded within the images, primarily due to the limited text recognition and layout understanding ability. To understand the sources of these limitations, we perform an exploratory analysis showing the drawbacks of classical visual encoders on visual text understanding. Hence, we present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder. Our model surpasses existing state-of-the-art models in various text-rich image understanding tasks, showcasing enhanced comprehension of textual content within images. Together, our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
Abstract:Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
Abstract:In subject-driven text-to-image generation, recent works have achieved superior performance by training the model on synthetic datasets containing numerous image pairs. Trained on these datasets, generative models can produce text-aligned images for specific subject from arbitrary testing image in a zero-shot manner. They even outperform methods which require additional fine-tuning on testing images. However, the cost of creating such datasets is prohibitive for most researchers. To generate a single training pair, current methods fine-tune a pre-trained text-to-image model on the subject image to capture fine-grained details, then use the fine-tuned model to create images for the same subject based on creative text prompts. Consequently, constructing a large-scale dataset with millions of subjects can require hundreds of thousands of GPU hours. To tackle this problem, we propose Toffee, an efficient method to construct datasets for subject-driven editing and generation. Specifically, our dataset construction does not need any subject-level fine-tuning. After pre-training two generative models, we are able to generate infinite number of high-quality samples. We construct the first large-scale dataset for subject-driven image editing and generation, which contains 5 million image pairs, text prompts, and masks. Our dataset is 5 times the size of previous largest dataset, yet our cost is tens of thousands of GPU hours lower. To test the proposed dataset, we also propose a model which is capable of both subject-driven image editing and generation. By simply training the model on our proposed dataset, it obtains competitive results, illustrating the effectiveness of the proposed dataset construction framework.
Abstract:While the generation of document layouts has been extensively explored, comprehensive document generation encompassing both layout and content presents a more complex challenge. This paper delves into this advanced domain, proposing a novel approach called DocSynthv2 through the development of a simple yet effective autoregressive structured model. Our model, distinct in its integration of both layout and textual cues, marks a step beyond existing layout-generation approaches. By focusing on the relationship between the structural elements and the textual content within documents, we aim to generate cohesive and contextually relevant documents without any reliance on visual components. Through experimental studies on our curated benchmark for the new task, we demonstrate the ability of our model combining layout and textual information in enhancing the generation quality and relevance of documents, opening new pathways for research in document creation and automated design. Our findings emphasize the effectiveness of autoregressive models in handling complex document generation tasks.
Abstract:Large multimodal language models have shown remarkable proficiency in understanding and editing images. However, a majority of these visually-tuned models struggle to comprehend the textual content embedded in images, primarily due to the limitation of training data. In this work, we introduce TRINS: a Text-Rich image INStruction dataset, with the objective of enhancing the reading ability of the multimodal large language model. TRINS is built upon LAION using hybrid data annotation strategies that include machine-assisted and human-assisted annotation processes. It contains 39,153 text-rich images, captions, and 102,437 questions. Specifically, we show that the number of words per annotation in TRINS is significantly longer than that of related datasets, providing new challenges. Furthermore, we introduce a simple and effective architecture, called a Language-vision Reading Assistant (LaRA), which is good at understanding textual content within images. LaRA outperforms existing state-of-the-art multimodal large language models on the TRINS dataset, as well as other classical benchmarks. Lastly, we conducted a comprehensive evaluation with TRINS on various text-rich image understanding and generation tasks, demonstrating its effectiveness.
Abstract:Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks. However, it is empirically found that LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data, such as sequential recommendation. In this paper, we aim to improve temporal awareness of LLMs by designing a principled prompting framework inspired by human cognitive processes. Specifically, we propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation. Besides, we emulate divergent thinking by aggregating LLM ranking results derived from these strategies. Evaluations on MovieLens-1M and Amazon Review datasets indicate that our proposed method significantly enhances the zero-shot capabilities of LLMs in sequential recommendation tasks.
Abstract:Recent advancements in instruction-following models have made user interactions with models more user-friendly and efficient, broadening their applicability. In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources. In this work, we introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts by specifying canvas size and design purpose, such as for book covers, posters, brochures, or menus. We developed three layout reasoning tasks to train the model in understanding and executing layout instructions. Experiments on two benchmarks show that our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello. This progress highlights the potential of multimodal instruction-following models to automate and simplify the design process, providing an approachable solution for a wide range of design tasks on visually-rich documents.
Abstract:Open-world entity segmentation, as an emerging computer vision task, aims at segmenting entities in images without being restricted by pre-defined classes, offering impressive generalization capabilities on unseen images and concepts. Despite its promise, existing entity segmentation methods like Segment Anything Model (SAM) rely heavily on costly expert annotators. This work presents Self-supervised Open-world Hierarchical Entity Segmentation (SOHES), a novel approach that eliminates the need for human annotations. SOHES operates in three phases: self-exploration, self-instruction, and self-correction. Given a pre-trained self-supervised representation, we produce abundant high-quality pseudo-labels through visual feature clustering. Then, we train a segmentation model on the pseudo-labels, and rectify the noises in pseudo-labels via a teacher-student mutual-learning procedure. Beyond segmenting entities, SOHES also captures their constituent parts, providing a hierarchical understanding of visual entities. Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation, marking a significant milestone towards high-quality open-world entity segmentation in the absence of human-annotated masks. Project page: https://SOHES.github.io.