Abstract:Cognitive diagnosis represents a fundamental research area within intelligent education, with the objective of measuring the cognitive status of individuals. Theoretically, an individual's cognitive state is essentially equivalent to their cognitive structure state. Cognitive structure state comprises two key components: knowledge state (KS) and knowledge structure state (KUS). The knowledge state reflects the learner's mastery of individual concepts, a widely studied focus within cognitive diagnosis. In contrast, the knowledge structure state-representing the learner's understanding of the relationships between concepts-remains inadequately modeled. A learner's cognitive structure is essential for promoting meaningful learning and shaping academic performance. Although various methods have been proposed, most focus on assessing KS and fail to assess KUS. To bridge this gap, we propose an innovative and effective framework-CSCD (Cognitive Structure State-based Cognitive Diagnosis)-which introduces a novel framework to modeling learners' cognitive structures in diagnostic assessments, thereby offering new insights into cognitive structure modeling. Specifically, we employ an edge-feature-based graph attention network to represent the learner's cognitive structure state, effectively integrating KS and KUS. Extensive experiments conducted on real datasets demonstrate the superior performance of this framework in terms of diagnostic accuracy and interpretability.
Abstract:Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate LLM hallucinations and enhance their performance in knowledge-intensive domains. However, these systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into retrieval databases can mislead the model into generating factually incorrect outputs. In this paper, we investigate both the retrieval and the generation components of RAG systems to understand how to enhance their robustness against such attacks. From the retrieval perspective, we analyze why and how the adversarial contexts are retrieved and assess how the quality of the retrieved passages impacts downstream generation. From a generation perspective, we evaluate whether LLMs' advanced critical thinking and internal knowledge capabilities can be leveraged to mitigate the impact of adversarial contexts, i.e., using skeptical prompting as a self-defense mechanism. Our experiments and findings provide actionable insights into designing safer and more resilient retrieval-augmented frameworks, paving the way for their reliable deployment in real-world applications.
Abstract:In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We also train the 2B and 9B models with knowledge distillation (Hinton et al., 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3 times bigger. We release all our models to the community.
Abstract:Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.
Abstract:This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences, sometimes referred to as Reinforcement Learning from \textit{Personalized} Human Feedback (RLPHF). Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification. Starting from specialized expert LLMs, each trained for one such particular preference dimension, we propose a black-box method that merges their outputs on a per-token level. We train a lightweight Preference Control Model (PCM) that dynamically translates the preference description and current context into next-token prediction weights. By combining the expert models' outputs at the token level, our approach dynamically generates text that optimizes the given preference. Empirical tests show that our method matches or surpasses existing preference merging techniques, providing a scalable, efficient alternative to fine-tuning LLMs for individual personalization.
Abstract:Iteratively improving and repairing source code with large language models (LLMs), known as refinement, has emerged as a popular way of generating programs that would be too complex to construct in one shot. Given a bank of test cases, together with a candidate program, an LLM can improve that program by being prompted with failed test cases. But it remains an open question how to best iteratively refine code, with prior work employing simple greedy or breadth-first strategies. We show here that refinement exposes an explore-exploit tradeoff: exploit by refining the program that passes the most test cases, or explore by refining a lesser considered program. We frame this as an arm-acquiring bandit problem, which we solve with Thompson Sampling. The resulting LLM-based program synthesis algorithm is broadly applicable: Across loop invariant synthesis, visual reasoning puzzles, and competition programming problems, we find that our new method can solve more problems using fewer language model calls.
Abstract:Large language models (LLM), such as Google's Minerva and OpenAI's GPT families, are becoming increasingly capable of solving mathematical quantitative reasoning problems. However, they still make unjustified logical and computational errors in their reasoning steps and answers. In this paper, we leverage the fact that if the training corpus of LLMs contained sufficiently many examples of formal mathematics (e.g. in Isabelle, a formal theorem proving environment), they can be prompted to translate i.e. autoformalize informal mathematical statements into formal Isabelle code -- which can be verified automatically for internal consistency. This provides a mechanism to automatically reject solutions whose formalized versions are inconsistent within themselves or with the formalized problem statement. We evaluate our method on GSM8K, MATH and MultiArith datasets and demonstrate that our approach provides a consistently better heuristic than vanilla majority voting -- the previously best method to identify correct answers, by more than 12% on GSM8K. In our experiments it improves results consistently across all datasets and LLM model sizes. The code can be found at https://github.com/jinpz/dtv.
Abstract:Human mathematicians are often good at recognizing modular and reusable theorems that make complex mathematical results within reach. In this paper, we propose a novel method called theoREm-from-prooF extrACTOR (REFACTOR) for training neural networks to mimic this ability in formal mathematical theorem proving. We show on a set of unseen proofs, REFACTOR is able to extract 19.6% of the theorems that humans would use to write the proofs. When applying the model to the existing Metamath library, REFACTOR extracted 16 new theorems. With newly extracted theorems, we show that the existing proofs in the MetaMath database can be refactored. The new theorems are used very frequently after refactoring, with an average usage of 733.5 times, and help shorten the proof lengths. Lastly, we demonstrate that the prover trained on the new-theorem refactored dataset proves more test theorems and outperforms state-of-the-art baselines by frequently leveraging a diverse set of newly extracted theorems. Code can be found at https://github.com/jinpz/refactor.
Abstract:Machine learning algorithms are increasingly provided as black-box cloud services or pre-trained models, without access to their training data. This motivates the problem of zero-shot out-of-distribution (OOD) detection. Concretely, we aim to detect OOD objects that do not belong to the classifier's label set but are erroneously classified as in-distribution (ID) objects. Our approach, RONIN, uses an off-the-shelf diffusion model to replace detected objects with inpainting. RONIN conditions the inpainting process with the predicted ID label, drawing the input object closer to the in-distribution domain. As a result, the reconstructed object is very close to the original in the ID cases and far in the OOD cases, allowing RONIN to effectively distinguish ID and OOD samples. Throughout extensive experiments, we demonstrate that RONIN achieves competitive results compared to previous approaches across several datasets, both in zero-shot and non-zero-shot settings.
Abstract:Abstractive summarization aims at generating natural language summaries of a source document that are succinct while preserving the important elements. Despite recent advances, neural text summarization models are known to be susceptible to hallucinating (or more correctly confabulating), that is to produce summaries with details that are not grounded in the source document. In this paper, we introduce a simple yet efficient technique, CoBa, to reduce hallucination in abstractive summarization. The approach is based on two steps: hallucination detection and mitigation. We show that the former can be achieved through measuring simple statistics about conditional word probabilities and distance to context words. Further, we demonstrate that straight-forward backtracking is surprisingly effective at mitigation. We thoroughly evaluate the proposed method with prior art on three benchmark datasets for text summarization. The results show that CoBa is effective and efficient in reducing hallucination, and offers great adaptability and flexibility.