Cornell University
Abstract:The robot learning community has made great strides in recent years, proposing new architectures and showcasing impressive new capabilities; however, the dominant metric used in the literature, especially for physical experiments, is "success rate", i.e. the percentage of runs that were successful. Furthermore, it is common for papers to report this number with little to no information regarding the number of runs, the initial conditions, and the success criteria, little to no narrative description of the behaviors and failures observed, and little to no statistical analysis of the findings. In this paper we argue that to move the field forward, researchers should provide a nuanced evaluation of their methods, especially when evaluating and comparing learned policies on physical robots. To do so, we propose best practices for future evaluations: explicitly reporting the experimental conditions, evaluating several metrics designed to complement success rate, conducting statistical analysis, and adding a qualitative description of failures modes. We illustrate these through an evaluation on physical robots of several learned policies for manipulation tasks.
Abstract:Given a collaborative high-level task and a team of heterogeneous robots and behaviors to satisfy it, this work focuses on the challenge of automatically, at runtime, adjusting the individual robot behaviors such that the task is still satisfied, when robots encounter changes to their abilities--either failures or additional actions they can perform. We consider tasks encoded in LTL^\psi and minimize global teaming reassignments (and as a result, local resynthesis) when robots' capabilities change. We also increase the expressivity of LTL^\psi by including additional types of constraints on the overall teaming assignment that the user can specify, such as the minimum number of robots required for each assignment. We demonstrate the framework in a simulated warehouse scenario.
Abstract:This paper presents a framework that enables robots to automatically recover from assumption violations of high-level specifications during task execution. In contrast to previous methods relying on user intervention to impose additional assumptions for failure recovery, our approach leverages synthesis-based repair to suggest new robot skills that, when implemented, repair the task. Our approach detects violations of environment safety assumptions during the task execution, relaxes the assumptions to admit observed environment behaviors, and acquires new robot skills for task completion. We demonstrate our approach with a Hello Robot Stretch in a factory-like scenario.
Abstract:We propose a control synthesis framework for a heterogeneous multi-robot system to satisfy collaborative tasks, where actions may take varying duration of time to complete. We encode tasks using the discrete logic LTL^\psi, which uses the concept of bindings to interleave robot actions and express information about relationship between specific task requirements and robot assignments. We present a synthesis approach to automatically generate a teaming assignment and corresponding discrete behavior that is correct-by-construction for continuous execution, while also implementing synchronization policies to ensure collaborative portions of the task are satisfied. We demonstrate our approach on a physical multi-robot system.
Abstract:We present a decentralized control algorithm for a minimalist robotic swarm lacking memory, explicit communication, or relative position information, to encapsulate multiple diffusive target sources in a bounded environment. The state-of-the-art approaches generally require either local communication or relative localization to provide guarantees of convergence and safety. We quantify trade-offs between task, control, and robot parameters for guaranteed safe convergence to all the sources. Furthermore, our algorithm is robust to occlusions and noise in the sensor measurements as we demonstrate in simulation.
Abstract:We propose a new multi-agent task grammar to encode collaborative tasks for a team of heterogeneous agents that can have overlapping capabilities. The grammar allows users to specify the relationship between agents and parts of the task without providing explicit assignments or constraints on the number of agents required. We develop a method to automatically find a team of agents and synthesize correct-by-construction control with synchronization policies to satisfy the task. We demonstrate the scalability of our approach through simulation and compare our method to existing task grammars that encode multi-agent tasks.
Abstract:Providing guarantees on the safe operation of robots against edge cases is challenging as testing methods such as traditional Monte-Carlo require too many samples to provide reasonable statistics. Built upon recent advancements in rare-event sampling, we present a model-based method to verify if a robotic system satisfies a Signal Temporal Logic (STL) specification in the face of environment variations and sensor/actuator noises. Our method is efficient and applicable to both linear and nonlinear and even black-box systems with arbitrary, but known, uncertainty distributions. For linear systems with Gaussian uncertainties, we exploit a feature to find optimal parameters that minimize the probability of failure. We demonstrate illustrative examples on applying our approach to real-world autonomous robotic systems.
Abstract:In this paper we present a grammar and control synthesis framework for online modification of Event-based Signal Temporal Logic (STL) specifications, during execution. These modifications allow a user to change the robots' task in response to potential future violations, changes to the environment, or user-defined task design changes. In cases where a modification is not possible, we provide feedback to the user and suggest alternative modifications. We demonstrate our task modification process using a Hello Robot Stretch satisfying an Event-based STL specification.
Abstract:We present a decentralized control algorithm for a robotic swarm given the task of encapsulating static and moving targets in a bounded unknown environment. We consider minimalist robots without memory, explicit communication, or localization information. The state-of-the-art approaches generally assume that the robots in the swarm are able to detect the relative position of neighboring robots and targets in order to provide convergence guarantees. In this work, we propose a novel control law for the guaranteed encapsulation of static and moving targets while avoiding all collisions, when the robots do not know the exact relative location of any robot or target in the environment. We make use of the Lyapunov stability theory to prove the convergence of our control algorithm and provide bounds on the ratio between the target and robot speeds. Furthermore, our proposed approach is able to provide stochastic guarantees under the bounds that we determine on task parameters for scenarios where a target moves faster than a robot. Finally, we present an analysis of how the emergent behavior changes with different parameters of the task and noisy sensor readings.
Abstract:We propose a decentralized control algorithm for a minimalistic robotic swarm with limited capabilities such that the desired global behavior emerges. We consider the problem of searching for and encapsulating various targets present in the environment while avoiding collisions with both static and dynamic obstacles. The novelty of this work is the guaranteed generation of desired complex swarm behavior with constrained individual robots which have no memory, no localization, and no knowledge of the exact relative locations of their neighbors. Moreover, we analyze how the emergent behavior changes with different parameters of the task, noise in the sensor reading, and asynchronous execution.