Abstract:Empathy plays a pivotal role in fostering prosocial behavior, often triggered by the sharing of personal experiences through narratives. However, modeling empathy using NLP approaches remains challenging due to its deep interconnection with human interaction dynamics. Previous approaches, which involve fine-tuning language models (LMs) on human-annotated empathic datasets, have had limited success. In our pursuit of improving empathy understanding in LMs, we propose several strategies, including contrastive learning with masked LMs and supervised fine-tuning with Large Language Models (LLMs). While these methods show improvements over previous methods, the overall results remain unsatisfactory. To better understand this trend, we performed an analysis which reveals a low agreement among annotators. This lack of consensus hinders training and highlights the subjective nature of the task. We also explore the cultural impact on annotations. To study this, we meticulously collected story pairs in Urdu language and find that subjectivity in interpreting empathy among annotators appears to be independent of cultural background. The insights from our systematic exploration of LMs' understanding of empathy suggest that there is considerable room for exploration in both task formulation and modeling.
Abstract:Large language models (LLMs), especially when instruction-tuned for chat, have become part of our daily lives, freeing people from the process of searching, extracting, and integrating information from multiple sources by offering a straightforward answer to a variety of questions in a single place. Unfortunately, in many cases, LLM responses are factually incorrect, which limits their applicability in real-world scenarios. As a result, research on evaluating and improving the factuality of LLMs has attracted a lot of research attention recently. In this survey, we critically analyze existing work with the aim to identify the major challenges and their associated causes, pointing out to potential solutions for improving the factuality of LLMs, and analyzing the obstacles to automated factuality evaluation for open-ended text generation. We further offer an outlook on where future research should go.
Abstract:Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at https://github.com/marslanm/multimodality-representation-learning.