Abstract:Deep learning has fundamentally reshaped the landscape of artificial intelligence over the past decade, enabling remarkable achievements across diverse domains. At the heart of these developments lie multi-layered neural network architectures that excel at automatic feature extraction, leading to significant improvements in machine learning tasks. To demystify these advances and offer accessible guidance, we present a comprehensive overview of the most influential deep learning algorithms selected through a broad-based survey of the field. Our discussion centers on pivotal architectures, including Residual Networks, Transformers, Generative Adversarial Networks, Variational Autoencoders, Graph Neural Networks, Contrastive Language-Image Pre-training, and Diffusion models. We detail their historical context, highlight their mathematical foundations and algorithmic principles, and examine subsequent variants, extensions, and practical considerations such as training methodologies, normalization techniques, and learning rate schedules. Beyond historical and technical insights, we also address their applications, challenges, and potential research directions. This survey aims to serve as a practical manual for both newcomers seeking an entry point into cutting-edge deep learning methods and experienced researchers transitioning into this rapidly evolving domain.
Abstract:Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs), closely mirroring biological neural processes. However, this potential comes with inherent challenges in directly training SNNs through spatio-temporal backpropagation -- stemming from the temporal dynamics of spiking neurons and their discrete signal processing -- which necessitates alternative ways of training, most notably through ANN-SNN conversion. In this work, we introduce a lightweight Forward Temporal Bias Correction (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead. We ground our method on provided theoretical findings that through proper temporal bias calibration the expected error of ANN-SNN conversion can be reduced to be zero after each time step. We further propose a heuristic algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation and we evaluate our method on CIFAR-10/100 and ImageNet datasets, achieving a notable increase in accuracy on all datasets. Codes are released at a GitHub repository.
Abstract:Spiking neural networks are becoming increasingly popular for their low energy requirement in real-world tasks with accuracy comparable to the traditional ANNs. SNN training algorithms face the loss of gradient information and non-differentiability due to the Heaviside function in minimizing the model loss over model parameters. To circumvent the problem surrogate method uses a differentiable approximation of the Heaviside in the backward pass, while the forward pass uses the Heaviside as the spiking function. We propose to use the zeroth order technique at the neuron level to resolve this dichotomy and use it within the automatic differentiation tool. As a result, we establish a theoretical connection between the proposed local zeroth-order technique and the existing surrogate methods and vice-versa. The proposed method naturally lends itself to energy-efficient training of SNNs on GPUs. Experimental results with neuromorphic datasets show that such implementation requires less than 1 percent neurons to be active in the backward pass, resulting in a 100x speed-up in the backward computation time. Our method offers better generalization compared to the state-of-the-art energy-efficient technique while maintaining similar efficiency.