Abstract:Current multimodal large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding. The limitation is largely attributable to inadequate perception of geometric primitives during image-level contrastive pre-training (e.g., CLIP). While recent efforts to improve math MLLMs have focused on scaling up mathematical visual instruction datasets and employing stronger LLM backbones, they often overlook persistent errors in visual recognition. In this paper, we systematically evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance, underscoring the critical role of fine-grained visual understanding. Notably, advanced models like GPT-4o exhibit a 70% error rate when identifying geometric entities, highlighting that this remains a key bottleneck in visual mathematical reasoning. To address this, we propose a novel approach, SVE-Math (Selective Vision-Enhanced Mathematical MLLM), featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps. Our model recognizes accurate visual primitives and generates precise visual prompts tailored to the language model's reasoning needs. In experiments, SVE-Math-Qwen2.5-7B outperforms other 7B models by 15% on MathVerse and is compatible with GPT-4V on MathVista. Despite being trained on smaller datasets, SVE-Math-7B achieves competitive performance on GeoQA, rivaling models trained on significantly larger datasets. Our findings emphasize the importance of incorporating fine-grained visual understanding into MLLMs and provide a promising direction for future research.
Abstract:The sparse Mixture-of-Experts (MoE) architecture is increasingly favored for scaling Large Language Models (LLMs) efficiently; however, MoE systems rely on heterogeneous compute and memory resources. These factors collectively influence the system's Cost, Accuracy, and Performance (CAP), creating a challenging trade-off. Current benchmarks often fail to provide precise estimates of these effects, complicating practical considerations for deploying MoE systems. To bridge this gap, we introduce MoE-CAP, a benchmark specifically designed to evaluate MoE systems. Our findings highlight the difficulty of achieving an optimal balance of cost, accuracy, and performance with existing hardware capabilities. MoE systems often necessitate compromises on one factor to optimize the other two, a dynamic we term the MoE-CAP trade-off. To identify the best trade-off, we propose novel performance evaluation metrics - Sparse Memory Bandwidth Utilization (S-MBU) and Sparse Model FLOPS Utilization (S-MFU) - and develop cost models that account for the heterogeneous compute and memory hardware integral to MoE systems. This benchmark is publicly available on HuggingFace: https://huggingface.co/spaces/sparse-generative-ai/open-moe-llm-leaderboard.
Abstract:We introduce NitroFusion, a fundamentally different approach to single-step diffusion that achieves high-quality generation through a dynamic adversarial framework. While one-step methods offer dramatic speed advantages, they typically suffer from quality degradation compared to their multi-step counterparts. Just as a panel of art critics provides comprehensive feedback by specializing in different aspects like composition, color, and technique, our approach maintains a large pool of specialized discriminator heads that collectively guide the generation process. Each discriminator group develops expertise in specific quality aspects at different noise levels, providing diverse feedback that enables high-fidelity one-step generation. Our framework combines: (i) a dynamic discriminator pool with specialized discriminator groups to improve generation quality, (ii) strategic refresh mechanisms to prevent discriminator overfitting, and (iii) global-local discriminator heads for multi-scale quality assessment, and unconditional/conditional training for balanced generation. Additionally, our framework uniquely supports flexible deployment through bottom-up refinement, allowing users to dynamically choose between 1-4 denoising steps with the same model for direct quality-speed trade-offs. Through comprehensive experiments, we demonstrate that NitroFusion significantly outperforms existing single-step methods across multiple evaluation metrics, particularly excelling in preserving fine details and global consistency.
Abstract:Semantic parsing that translates natural language queries to SPARQL is of great importance for Knowledge Graph Question Answering (KGQA) systems. Although pre-trained language models like T5 have achieved significant success in the Text-to-SPARQL task, their generated outputs still exhibit notable errors specific to the SPARQL language, such as triplet flips. To address this challenge and further improve the performance, we propose an additional pre-training stage with a new objective, Triplet Order Correction (TOC), along with the commonly used Masked Language Modeling (MLM), to collectively enhance the model's sensitivity to triplet order and SPARQL syntax. Our method achieves state-of-the-art performances on three widely-used benchmarks.
Abstract:Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
Abstract:Structured finance, which involves restructuring diverse assets into securities like MBS, ABS, and CDOs, enhances capital market efficiency but presents significant due diligence challenges. This study explores the integration of artificial intelligence (AI) with traditional asset review processes to improve efficiency and accuracy in structured finance. Using both open-sourced and close-sourced large language models (LLMs), we demonstrate that AI can automate the verification of information between loan applications and bank statements effectively. While close-sourced models such as GPT-4 show superior performance, open-sourced models like LLAMA3 offer a cost-effective alternative. Dual-agent systems further increase accuracy, though this comes with higher operational costs. This research highlights AI's potential to minimize manual errors and streamline due diligence, suggesting a broader application of AI in financial document analysis and risk management.
Abstract:Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs), closely mirroring biological neural processes. However, this potential comes with inherent challenges in directly training SNNs through spatio-temporal backpropagation -- stemming from the temporal dynamics of spiking neurons and their discrete signal processing -- which necessitates alternative ways of training, most notably through ANN-SNN conversion. In this work, we introduce a lightweight Forward Temporal Bias Correction (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead. We ground our method on provided theoretical findings that through proper temporal bias calibration the expected error of ANN-SNN conversion can be reduced to be zero after each time step. We further propose a heuristic algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation and we evaluate our method on CIFAR-10/100 and ImageNet datasets, achieving a notable increase in accuracy on all datasets. Codes are released at a GitHub repository.
Abstract:Despite the significant advancements in natural language processing capabilities demonstrated by large language models such as ChatGPT, their proficiency in comprehending and processing spatial information, especially within the domains of 2D and 3D route planning, remains notably underdeveloped. This paper investigates the inherent limitations of ChatGPT and similar models in spatial reasoning and navigation-related tasks, an area critical for applications ranging from autonomous vehicle guidance to assistive technologies for the visually impaired. In this paper, we introduce a novel evaluation framework complemented by a baseline dataset, meticulously crafted for this study. This dataset is structured around three key tasks: plotting spatial points, planning routes in two-dimensional (2D) spaces, and devising pathways in three-dimensional (3D) environments. We specifically developed this dataset to assess the spatial reasoning abilities of ChatGPT. Our evaluation reveals key insights into the model's capabilities and limitations in spatial understanding.
Abstract:Large Language Models (LLMs) evaluation is a patchy and inconsistent landscape, and it is becoming clear that the quality of automatic evaluation metrics is not keeping up with the pace of development of generative models. We aim to improve the understanding of current models' performance by providing a preliminary and hybrid evaluation on a range of open and closed-source generative LLMs on three NLP benchmarks: text summarisation, text simplification and grammatical error correction (GEC), using both automatic and human evaluation. We also explore the potential of the recently released GPT-4 to act as an evaluator. We find that ChatGPT consistently outperforms many other popular models according to human reviewers on the majority of metrics, while scoring much more poorly when using classic automatic evaluation metrics. We also find that human reviewers rate the gold reference as much worse than the best models' outputs, indicating the poor quality of many popular benchmarks. Finally, we find that GPT-4 is capable of ranking models' outputs in a way which aligns reasonably closely to human judgement despite task-specific variations, with a lower alignment in the GEC task.
Abstract:Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, and switch between tasks as needed: therefore such all tasks activated inference is also highly inefficient and non-scalable. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL. Our framework, dubbed M$^3$ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training. Then at inference with any task of interest, the same design allows for activating only the task-corresponding sparse expert pathway, instead of the full model. Our new model design is further enhanced by hardware-level innovations, in particular, a novel computation reordering scheme tailored for memory-constrained MTL that achieves zero-overhead switching between tasks and can scale to any number of experts. When executing single-task inference, M$^{3}$ViT achieves higher accuracies than encoder-focused MTL methods, while significantly reducing 88% inference FLOPs. When implemented on a hardware platform of one Xilinx ZCU104 FPGA, our co-design framework reduces the memory requirement by 2.4 times, while achieving energy efficiency up to 9.23 times higher than a comparable FPGA baseline. Code is available at: https://github.com/VITA-Group/M3ViT.