Abstract:We introduce 3DEgo to address a novel problem of directly synthesizing photorealistic 3D scenes from monocular videos guided by textual prompts. Conventional methods construct a text-conditioned 3D scene through a three-stage process, involving pose estimation using Structure-from-Motion (SfM) libraries like COLMAP, initializing the 3D model with unedited images, and iteratively updating the dataset with edited images to achieve a 3D scene with text fidelity. Our framework streamlines the conventional multi-stage 3D editing process into a single-stage workflow by overcoming the reliance on COLMAP and eliminating the cost of model initialization. We apply a diffusion model to edit video frames prior to 3D scene creation by incorporating our designed noise blender module for enhancing multi-view editing consistency, a step that does not require additional training or fine-tuning of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to create 3D scenes from the multi-view consistent edited frames, capitalizing on the inherent temporal continuity and explicit point cloud data. 3DEgo demonstrates remarkable editing precision, speed, and adaptability across a variety of video sources, as validated by extensive evaluations on six datasets, including our own prepared GS25 dataset. Project Page: https://3dego.github.io/
Abstract:The potential of deep learning, especially in medical imaging, initiated astonishing results and improved the methodologies after every passing day. Deep learning in radiology provides the opportunity to classify, detect and segment different diseases automatically. In the proposed study, we worked on a non-trivial aspect of medical imaging where we classified and localized the X-Rays affected by bullets. We tested Images on different classification and localization models to get considerable accuracy. The replicated data set used in the study was replicated on different images of chest X-Rays. The proposed model worked not only on chest radiographs but other body organs X-rays like leg, abdomen, head, even the training dataset based on chest radiographs. Custom models have been used for classification and localization purposes after tuning parameters. Finally, the results of our findings manifested using different frameworks. This might assist the research enlightening towards this field. To the best of our knowledge, this is the first study on the detection and classification of radiographs affected by bullets using deep learning.