Abstract:Audio-Language Models (ALMs) have recently achieved remarkable success in zero-shot audio recognition tasks, which match features of audio waveforms with class-specific text prompt features, inspired by advancements in Vision-Language Models (VLMs). Given the sensitivity of zero-shot performance to the choice of hand-crafted text prompts, many prompt learning techniques have been developed for VLMs. We explore the efficacy of these approaches in ALMs and propose a novel method, Prompt Learning in Audio Language Models (PALM), which optimizes the feature space of the text encoder branch. Unlike existing methods that work in the input space, our approach results in greater training efficiency. We demonstrate the effectiveness of our approach on 11 audio recognition datasets, encompassing a variety of speech-processing tasks, and compare the results with three baselines in a few-shot learning setup. Our method is either on par with or outperforms other approaches while being computationally less demanding. Code is available at https://asif-hanif.github.io/palm/
Abstract:Labels noise refers to errors in training labels caused by cheap data annotation methods, such as web scraping or crowd-sourcing, which can be detrimental to the performance of supervised classifiers. Several methods have been proposed to counteract the effect of random label noise in supervised classification, and some studies have shown that BERT is already robust against high rates of randomly injected label noise. However, real label noise is not random; rather, it is often correlated with input features or other annotator-specific factors. In this paper, we evaluate BERT in the presence of two types of realistic label noise: feature-dependent label noise, and synthetic label noise from annotator disagreements. We show that the presence of these types of noise significantly degrades BERT classification performance. To improve robustness, we evaluate different types of ensembles and noise-cleaning methods and compare their effectiveness against label noise across different datasets.