Abstract:Developing robust automatic speech recognition (ASR) systems for Arabic, a language characterized by its rich dialectal diversity and often considered a low-resource language in speech technology, demands effective strategies to manage its complexity. This study explores three critical factors influencing ASR performance: the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning compared to a multi-dialectal approach, and the ability to generalize to unseen dialects. Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic.
Abstract:Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates that the performance of our multi-task model is comparable to that of individually trained models while significantly saving computational and memory costs ($\sim$50\% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.
Abstract:Neural multi-channel speech enhancement models, in particular those based on the U-Net architecture, demonstrate promising performance and generalization potential. These models typically encode input channels independently, and integrate the channels during later stages of the network. In this paper, we propose a novel modification of these models by incorporating relative information from the outset, where each channel is processed in conjunction with a reference channel through stacking. This input strategy exploits comparative differences to adaptively fuse information between channels, thereby capturing crucial spatial information and enhancing the overall performance. The experiments conducted on the CHiME-3 dataset demonstrate improvements in speech enhancement metrics across various architectures.
Abstract:Audio-Language Models (ALMs) have recently achieved remarkable success in zero-shot audio recognition tasks, which match features of audio waveforms with class-specific text prompt features, inspired by advancements in Vision-Language Models (VLMs). Given the sensitivity of zero-shot performance to the choice of hand-crafted text prompts, many prompt learning techniques have been developed for VLMs. We explore the efficacy of these approaches in ALMs and propose a novel method, Prompt Learning in Audio Language Models (PALM), which optimizes the feature space of the text encoder branch. Unlike existing methods that work in the input space, our approach results in greater training efficiency. We demonstrate the effectiveness of our approach on 11 audio recognition datasets, encompassing a variety of speech-processing tasks, and compare the results with three baselines in a few-shot learning setup. Our method is either on par with or outperforms other approaches while being computationally less demanding. Code is available at https://asif-hanif.github.io/palm/
Abstract:This paper introduces Mixat: a dataset of Emirati speech code-mixed with English. Mixat was developed to address the shortcomings of current speech recognition resources when applied to Emirati speech, and in particular, to bilignual Emirati speakers who often mix and switch between their local dialect and English. The data set consists of 15 hours of speech derived from two public podcasts featuring native Emirati speakers, one of which is in the form of conversations between the host and a guest. Therefore, the collection contains examples of Emirati-English code-switching in both formal and natural conversational contexts. In this paper, we describe the process of data collection and annotation, and describe some of the features and statistics of the resulting data set. In addition, we evaluate the performance of pre-trained Arabic and multi-lingual ASR systems on our dataset, demonstrating the shortcomings of existing models on this low-resource dialectal Arabic, and the additional challenge of recognizing code-switching in ASR. The dataset will be made publicly available for research use.
Abstract:Automatic text-based diacritic restoration models generally have high diacritic error rates when applied to speech transcripts as a result of domain and style shifts in spoken language. In this work, we explore the possibility of improving the performance of automatic diacritic restoration when applied to speech data by utilizing the parallel spoken utterances. In particular, we use the pre-trained Whisper ASR model fine-tuned on relatively small amounts of diacritized Arabic speech data to produce rough diacritized transcripts for the speech utterances, which we then use as an additional input for a transformer-based diacritic restoration model. The proposed model consistently improve diacritic restoration performance compared to an equivalent text-only model, with at least 5\% absolute reduction in diacritic error rate within the same domain and on two out-of-domain test sets. Our results underscore the inadequacy of current text-based diacritic restoration models for speech data sets and provide a new baseline for speech-based diacritic restoration.
Abstract:Text word embeddings that encode distributional semantic features work by modeling contextual similarities of frequently occurring words. Acoustic word embeddings, on the other hand, typically encode low-level phonetic similarities. Semantic embeddings for spoken words have been previously explored using similar algorithms to Word2Vec, but the resulting vectors still mainly encoded phonetic rather than semantic features. In this paper, we examine the assumptions and architectures used in previous works and show experimentally how Word2Vec algorithms fail to encode distributional semantics when the input units are acoustically correlated. In addition, previous works relied on the simplifying assumptions of perfect word segmentation and clustering by word type. Given these conditions, a trivial solution identical to text-based embeddings has been overlooked. We follow this simpler path using automatic word type clustering and examine the effects on the resulting embeddings, highlighting the true challenges in this task.
Abstract:We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use.
Abstract:In this paper, we describe a spoken Arabic dialect identification (ADI) model for Arabic that consistently outperforms previously published results on two benchmark datasets: ADI-5 and ADI-17. We explore two architectural variations: ResNet and ECAPA-TDNN, coupled with two types of acoustic features: MFCCs and features exratected from the pre-trained self-supervised model UniSpeech-SAT Large, as well as a fusion of all four variants. We find that individually, ECAPA-TDNN network outperforms ResNet, and models with UniSpeech-SAT features outperform models with MFCCs by a large margin. Furthermore, a fusion of all four variants consistently outperforms individual models. Our best models outperform previously reported results on both datasets, with accuracies of 84.7% and 96.9% on ADI-5 and ADI-17, respectively.
Abstract:Recently, large pre-trained multilingual speech models have shown potential in scaling Automatic Speech Recognition (ASR) to many low-resource languages. Some of these models employ language adapters in their formulation, which helps to improve monolingual performance and avoids some of the drawbacks of multi-lingual modeling on resource-rich languages. However, this formulation restricts the usability of these models on code-switched speech, where two languages are mixed together in the same utterance. In this work, we propose ways to effectively fine-tune such models on code-switched speech, by assimilating information from both language adapters at each language adaptation point in the network. We also model code-switching as a sequence of latent binary sequences that can be used to guide the flow of information from each language adapter at the frame level. The proposed approaches are evaluated on three code-switched datasets encompassing Arabic, Mandarin, and Hindi languages paired with English, showing consistent improvements in code-switching performance with at least 10\% absolute reduction in CER across all test sets.