Academia Sinica
Abstract:Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.
Abstract:Model Inversion (MI) attacks pose a significant threat to the privacy of Deep Neural Networks by recovering training data distribution from well-trained models. While existing defenses often rely on regularization techniques to reduce information leakage, they remain vulnerable to recent attacks. In this paper, we propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI attacks. A trapdoor is integrated into the model to predict a specific label when the input is injected with the corresponding trigger. Consequently, this trapdoor information serves as the "shortcut" for MI attacks, leading them to extract trapdoor triggers rather than private data. We provide theoretical insights into the impacts of trapdoor's effectiveness and naturalness on deceiving MI attacks. In addition, empirical experiments demonstrate the state-of-the-art defense performance of Trap-MID against various MI attacks without the requirements for extra data or large computational overhead. Our source code is publicly available at https://github.com/ntuaislab/Trap-MID.
Abstract:This paper examines the phenomenon of probabilistic robustness overestimation in TRADES, a prominent adversarial training method. Our study reveals that TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttack testing accuracy in the multiclass classification task. This discrepancy highlights a significant overestimation of robustness for these instances, potentially linked to gradient masking. We further analyze the parameters contributing to unstable models that lead to overestimation. Our findings indicate that smaller batch sizes, lower beta values (which control the weight of the robust loss term in TRADES), larger learning rates, and higher class complexity (e.g., CIFAR-100 versus CIFAR-10) are associated with an increased likelihood of robustness overestimation. By examining metrics such as the First-Order Stationary Condition (FOSC), inner-maximization, and gradient information, we identify the underlying cause of this phenomenon as gradient masking and provide insights into it. Furthermore, our experiments show that certain unstable training instances may return to a state without robust overestimation, inspiring our attempts at a solution. In addition to adjusting parameter settings to reduce instability or retraining when overestimation occurs, we recommend incorporating Gaussian noise in inputs when the FOSC score exceed the threshold. This method aims to mitigate robustness overestimation of TRADES and other similar methods at its source, ensuring more reliable representation of adversarial robustness during evaluation.
Abstract:Recent advancements in large language models (LLMs) have introduced the 'task vector' concept, which has significantly impacted various domains but remains underexplored in speech recognition. This paper presents a novel 'SYN2REAL' task vector for domain adaptation in automatic speech recognition (ASR), specifically targeting text-only domains. Traditional fine-tuning on synthetic speech often results in performance degradation due to acoustic mismatches. To address this issue, we propose creating a 'SYN2REAL' vector by subtracting the parameter differences between models fine-tuned on real and synthetic speech. This vector effectively bridges the gap between the two domains. Experiments on the SLURP dataset demonstrate that our approach yields an average improvement of 11.15% in word error rate for unseen target domains, highlighting the potential of task vectors in enhancing speech domain adaptation.
Abstract:Recent works have shown considerable improvements in task-oriented dialogue (TOD) systems by utilizing pretrained large language models (LLMs) in an end-to-end manner. However, the biased behavior of each component in a TOD system and the error propagation issue in the end-to-end framework can lead to seriously biased TOD responses. Existing works of fairness only focus on the total bias of a system. In this paper, we propose a diagnosis method to attribute bias to each component of a TOD system. With the proposed attribution method, we can gain a deeper understanding of the sources of bias. Additionally, researchers can mitigate biased model behavior at a more granular level. We conduct experiments to attribute the TOD system's bias toward three demographic axes: gender, age, and race. Experimental results show that the bias of a TOD system usually comes from the response generation model.
Abstract:Recently, researchers have made considerable improvements in dialogue systems with the progress of large language models (LLMs) such as ChatGPT and GPT-4. These LLM-based chatbots encode the potential biases while retaining disparities that can harm humans during interactions. The traditional biases investigation methods often rely on human-written test cases. However, these test cases are usually expensive and limited. In this work, we propose a first-of-its-kind method that automatically generates test cases to detect LLMs' potential gender bias. We apply our method to three well-known LLMs and find that the generated test cases effectively identify the presence of biases. To address the biases identified, we propose a mitigation strategy that uses the generated test cases as demonstrations for in-context learning to circumvent the need for parameter fine-tuning. The experimental results show that LLMs generate fairer responses with the proposed approach.
Abstract:In standard adversarial training, models are optimized to fit one-hot labels within allowable adversarial perturbation budgets. However, the ignorance of underlying distribution shifts brought by perturbations causes the problem of robust overfitting. To address this issue and enhance adversarial robustness, we analyze the characteristics of robust models and identify that robust models tend to produce smoother and well-calibrated outputs. Based on the observation, we propose a simple yet effective method, Annealing Self-Distillation Rectification (ADR), which generates soft labels as a better guidance mechanism that accurately reflects the distribution shift under attack during adversarial training. By utilizing ADR, we can obtain rectified distributions that significantly improve model robustness without the need for pre-trained models or extensive extra computation. Moreover, our method facilitates seamless plug-and-play integration with other adversarial training techniques by replacing the hard labels in their objectives. We demonstrate the efficacy of ADR through extensive experiments and strong performances across datasets.
Abstract:With the power of large pretrained language models, various research works have integrated knowledge into dialogue systems. The traditional techniques treat knowledge as part of the input sequence for the dialogue system, prepending a set of knowledge statements in front of dialogue history. However, such a mechanism forces knowledge sets to be concatenated in an ordered manner, making models implicitly pay imbalanced attention to the sets during training. In this paper, we first investigate how the order of the knowledge set can influence autoregressive dialogue systems' responses. We conduct experiments on two commonly used dialogue datasets with two types of transformer-based models and find that models view the input knowledge unequally. To this end, we propose a simple and novel technique to alleviate the order effect by modifying the position embeddings of knowledge input in these models. With the proposed position embedding method, the experimental results show that each knowledge statement is uniformly considered to generate responses.
Abstract:Randomized smoothing is currently the state-of-the-art method that provides certified robustness for deep neural networks. However, it often cannot achieve an adequate certified region on real-world datasets. One way to obtain a larger certified region is to use an input-specific algorithm instead of using a fixed Gaussian filter for all data points. Several methods based on this idea have been proposed, but they either suffer from high computational costs or gain marginal improvement in certified radius. In this work, we show that by exploiting the quasiconvex problem structure, we can find the optimal certified radii for most data points with slight computational overhead. This observation leads to an efficient and effective input-specific randomized smoothing algorithm. We conduct extensive experiments and empirical analysis on Cifar10 and ImageNet. The results show that the proposed method significantly enhances the certified radii with low computational overhead.
Abstract:Fair Active Learning (FAL) utilized active learning techniques to achieve high model performance with limited data and to reach fairness between sensitive groups (e.g., genders). However, the impact of the adversarial attack, which is vital for various safety-critical machine learning applications, is not yet addressed in FAL. Observing this, we introduce a novel task, Fair Robust Active Learning (FRAL), integrating conventional FAL and adversarial robustness. FRAL requires ML models to leverage active learning techniques to jointly achieve equalized performance on benign data and equalized robustness against adversarial attacks between groups. In this new task, previous FAL methods generally face the problem of unbearable computational burden and ineffectiveness. Therefore, we develop a simple yet effective FRAL strategy by Joint INconsistency (JIN). To efficiently find samples that can boost the performance and robustness of disadvantaged groups for labeling, our method exploits the prediction inconsistency between benign and adversarial samples as well as between standard and robust models. Extensive experiments under diverse datasets and sensitive groups demonstrate that our method not only achieves fairer performance on benign samples but also obtains fairer robustness under white-box PGD attacks compared with existing active learning and FAL baselines. We are optimistic that FRAL would pave a new path for developing safe and robust ML research and applications such as facial attribute recognition in biometrics systems.