Abstract:Randomized smoothing is currently the state-of-the-art method that provides certified robustness for deep neural networks. However, it often cannot achieve an adequate certified region on real-world datasets. One way to obtain a larger certified region is to use an input-specific algorithm instead of using a fixed Gaussian filter for all data points. Several methods based on this idea have been proposed, but they either suffer from high computational costs or gain marginal improvement in certified radius. In this work, we show that by exploiting the quasiconvex problem structure, we can find the optimal certified radii for most data points with slight computational overhead. This observation leads to an efficient and effective input-specific randomized smoothing algorithm. We conduct extensive experiments and empirical analysis on Cifar10 and ImageNet. The results show that the proposed method significantly enhances the certified radii with low computational overhead.
Abstract:Object detection is an important computer vision task with plenty of real-world applications; therefore, how to enhance its robustness against adversarial attacks has emerged as a crucial issue. However, most of the previous defense methods focused on the classification task and had few analysis in the context of the object detection task. In this work, to address the issue, we present a novel class-aware robust adversarial training paradigm for the object detection task. For a given image, the proposed approach generates an universal adversarial perturbation to simultaneously attack all the occurred objects in the image through jointly maximizing the respective loss for each object. Meanwhile, instead of normalizing the total loss with the number of objects, the proposed approach decomposes the total loss into class-wise losses and normalizes each class loss using the number of objects for the class. The adversarial training based on the class weighted loss can not only balances the influence of each class but also effectively and evenly improves the adversarial robustness of trained models for all the object classes as compared with the previous defense methods. Furthermore, with the recent development of fast adversarial training, we provide a fast version of the proposed algorithm which can be trained faster than the traditional adversarial training while keeping comparable performance. With extensive experiments on the challenging PASCAL-VOC and MS-COCO datasets, the evaluation results demonstrate that the proposed defense methods can effectively enhance the robustness of the object detection models.