Abstract:Deep learning models are known to be vulnerable to adversarial attacks by injecting sophisticated designed perturbations to input data. Training-time defenses still exhibit a significant performance gap between natural accuracy and robust accuracy. In this paper, we investigate a new test-time adversarial defense method via diffusion-based recovery along opposite adversarial paths (OAPs). We present a purifier that can be plugged into a pre-trained model to resist adversarial attacks. Different from prior arts, the key idea is excessive denoising or purification by integrating the opposite adversarial direction with reverse diffusion to push the input image further toward the opposite adversarial direction. For the first time, we also exemplify the pitfall of conducting AutoAttack (Rand) for diffusion-based defense methods. Through the lens of time complexity, we examine the trade-off between the effectiveness of adaptive attack and its computation complexity against our defense. Experimental evaluation along with time cost analysis verifies the effectiveness of the proposed method.
Abstract:This paper examines the phenomenon of probabilistic robustness overestimation in TRADES, a prominent adversarial training method. Our study reveals that TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttack testing accuracy in the multiclass classification task. This discrepancy highlights a significant overestimation of robustness for these instances, potentially linked to gradient masking. We further analyze the parameters contributing to unstable models that lead to overestimation. Our findings indicate that smaller batch sizes, lower beta values (which control the weight of the robust loss term in TRADES), larger learning rates, and higher class complexity (e.g., CIFAR-100 versus CIFAR-10) are associated with an increased likelihood of robustness overestimation. By examining metrics such as the First-Order Stationary Condition (FOSC), inner-maximization, and gradient information, we identify the underlying cause of this phenomenon as gradient masking and provide insights into it. Furthermore, our experiments show that certain unstable training instances may return to a state without robust overestimation, inspiring our attempts at a solution. In addition to adjusting parameter settings to reduce instability or retraining when overestimation occurs, we recommend incorporating Gaussian noise in inputs when the FOSC score exceed the threshold. This method aims to mitigate robustness overestimation of TRADES and other similar methods at its source, ensuring more reliable representation of adversarial robustness during evaluation.
Abstract:Semi-supervised learning (SSL) has achieved remarkable performance with a small fraction of labeled data by leveraging vast amounts of unlabeled data from the Internet. However, this large pool of untrusted data is extremely vulnerable to data poisoning, leading to potential backdoor attacks. Current backdoor defenses are not yet effective against such a vulnerability in SSL. In this study, we propose a novel method, Unlabeled Data Purification (UPure), to disrupt the association between trigger patterns and target classes by introducing perturbations in the frequency domain. By leveraging the Rate- Distortion-Perception (RDP) trade-off, we further identify the frequency band, where the perturbations are added, and justify this selection. Notably, UPure purifies poisoned unlabeled data without the need of extra clean labeled data. Extensive experiments on four benchmark datasets and five SSL algorithms demonstrate that UPure effectively reduces the attack success rate from 99.78% to 0% while maintaining model accuracy
Abstract:With the rapid development of technology, the automated monitoring systems of large-scale factories are becoming more and more important. By collecting a large amount of machine sensor data, we can have many ways to find anomalies. We believe that the real core value of an automated monitoring system is to identify and track the cause of the problem. The most famous method for finding causal anomalies is RCA, but there are many problems that cannot be ignored. They used the AutoRegressive eXogenous (ARX) model to create a time-invariant correlation network as a machine profile, and then use this profile to track the causal anomalies by means of a method called fault propagation. There are two major problems in describing the behavior of a machine by using the correlation network established by ARX: (1) It does not take into account the diversity of states (2) It does not separately consider the correlations with different time-lag. Based on these problems, we propose a framework called Ranking Causal Anomalies in End-to-End System (RCAE2E), which completely solves the problems mentioned above. In the experimental part, we use synthetic data and real-world large-scale photoelectric factory data to verify the correctness and existence of our method hypothesis.