National Chiao Tung University, Taiwan
Abstract:Traditional time series forecasting models mainly rely on historical numeric values to predict future outcomes.While these models have shown promising results, they often overlook the rich information available in other modalities, such as textual descriptions of special events, which can provide crucial insights into future dynamics.However, research that jointly incorporates text in time series forecasting remains relatively underexplored compared to other cross-modality work. Additionally, the modality gap between time series data and textual information poses a challenge for multimodal learning. To address this task, we propose Text2Freq, a cross-modality model that integrates text and time series data via the frequency domain. Specifically, our approach aligns textual information to the low-frequency components of time series data, establishing more effective and interpretable alignments between these two modalities. Our experiments on paired datasets of real-world stock prices and synthetic texts show that Text2Freq achieves state-of-the-art performance, with its adaptable architecture encouraging future research in this field.
Abstract:Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.
Abstract:Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and high dimensionality from hundreds of sensors. These datasets also include domain-specific expert knowledge and chronological order information, reflecting the recording order across different machines, which is pivotal for discerning causal relationships within the manufacturing data. However, previous methods for handling missing data in scenarios akin to real-world conditions have not been able to effectively utilize expert knowledge. Conversely, prior methods that can incorporate expert knowledge struggle with datasets that exhibit missing values. Therefore, we propose COKE to construct causal graphs in manufacturing datasets by leveraging expert knowledge and chronological order among sensors without imputing missing data. Utilizing the characteristics of the recipe, we maximize the use of samples with missing values, derive embeddings from intersections with an initial graph that incorporates expert knowledge and chronological order, and create a sensor ordering graph. The graph-generating process has been optimized by an actor-critic architecture to obtain a final graph that has a maximum reward. Experimental evaluations in diverse settings of sensor quantities and missing proportions demonstrate that our approach compared with the benchmark methods shows an average improvement of 39.9% in the F1-score. Moreover, the F1-score improvement can reach 62.6% when considering the configuration similar to real-world datasets, and 85.0% in real-world semiconductor datasets. The source code is available at https://github.com/OuTingYun/COKE.
Abstract:Electronic health records (EHRs) are multimodal by nature, consisting of structured tabular features like lab tests and unstructured clinical notes. In real-life clinical practice, doctors use complementary multimodal EHR data sources to get a clearer picture of patients' health and support clinical decision-making. However, most EHR predictive models do not reflect these procedures, as they either focus on a single modality or overlook the inter-modality interactions/redundancy. In this work, we propose MEDFuse, a Multimodal EHR Data Fusion framework that incorporates masked lab-test modeling and large language models (LLMs) to effectively integrate structured and unstructured medical data. MEDFuse leverages multimodal embeddings extracted from two sources: LLMs fine-tuned on free clinical text and masked tabular transformers trained on structured lab test results. We design a disentangled transformer module, optimized by a mutual information loss to 1) decouple modality-specific and modality-shared information and 2) extract useful joint representation from the noise and redundancy present in clinical notes. Through comprehensive validation on the public MIMIC-III dataset and the in-house FEMH dataset, MEDFuse demonstrates great potential in advancing clinical predictions, achieving over 90% F1 score in the 10-disease multi-label classification task.
Abstract:Badminton enjoys widespread popularity, and reports on matches generally include details such as player names, game scores, and ball types, providing audiences with a comprehensive view of the games. However, writing these reports can be a time-consuming task. This challenge led us to explore whether a Large Language Model (LLM) could automate the generation and evaluation of badminton reports. We introduce a novel framework named BADGE, designed for this purpose using LLM. Our method consists of two main phases: Report Generation and Report Evaluation. Initially, badminton-related data is processed by the LLM, which then generates a detailed report of the match. We tested different Input Data Types, In-Context Learning (ICL), and LLM, finding that GPT-4 performs best when using CSV data type and the Chain of Thought prompting. Following report generation, the LLM evaluates and scores the reports to assess their quality. Our comparisons between the scores evaluated by GPT-4 and human judges show a tendency to prefer GPT-4 generated reports. Since the application of LLM in badminton reporting remains largely unexplored, our research serves as a foundational step for future advancements in this area. Moreover, our method can be extended to other sports games, thereby enhancing sports promotion. For more details, please refer to https://github.com/AndyChiangSH/BADGE.
Abstract:In the dynamic and rapid tactic involvements of turn-based sports, badminton stands out as an intrinsic paradigm that requires alter-dependent decision-making of players. While the advancement of learning from offline expert data in sequential decision-making has been witnessed in various domains, how to rally-wise imitate the behaviors of human players from offline badminton matches has remained underexplored. Replicating opponents' behavior benefits players by allowing them to undergo strategic development with direction before matches. However, directly applying existing methods suffers from the inherent hierarchy of the match and the compounding effect due to the turn-based nature of players alternatively taking actions. In this paper, we propose RallyNet, a novel hierarchical offline imitation learning model for badminton player behaviors: (i) RallyNet captures players' decision dependencies by modeling decision-making processes as a contextual Markov decision process. (ii) RallyNet leverages the experience to generate context as the agent's intent in the rally. (iii) To generate more realistic behavior, RallyNet leverages Geometric Brownian Motion (GBM) to model the interactions between players by introducing a valuable inductive bias for learning player behaviors. In this manner, RallyNet links player intents with interaction models with GBM, providing an understanding of interactions for sports analytics. We extensively validate RallyNet with the largest available real-world badminton dataset consisting of men's and women's singles, demonstrating its ability to imitate player behaviors. Results reveal RallyNet's superiority over offline imitation learning methods and state-of-the-art turn-based approaches, outperforming them by at least 16% in mean rule-based agent normalization score. Furthermore, we discuss various practical use cases to highlight RallyNet's applicability.
Abstract:In this paper, we present Pre-CoFactv3, a comprehensive framework comprised of Question Answering and Text Classification components for fact verification. Leveraging In-Context Learning, Fine-tuned Large Language Models (LLMs), and the FakeNet model, we address the challenges of fact verification. Our experiments explore diverse approaches, comparing different Pre-trained LLMs, introducing FakeNet, and implementing various ensemble methods. Notably, our team, Trifecta, secured first place in the AAAI-24 Factify 3.0 Workshop, surpassing the baseline accuracy by 103% and maintaining a 70% lead over the second competitor. This success underscores the efficacy of our approach and its potential contributions to advancing fact verification research.
Abstract:Chronic diseases such as diabetes are the leading causes of morbidity and mortality worldwide. Numerous research studies have been attempted with various deep learning models in diagnosis. However, most previous studies had certain limitations, including using publicly available datasets (e.g. MIMIC), and imbalanced data. In this study, we collected five-year electronic health records (EHRs) from the Taiwan hospital database, including 1,420,596 clinical notes, 387,392 laboratory test results, and more than 1,505 laboratory test items, focusing on research pre-training large language models. We proposed a novel Large Language Multimodal Models (LLMMs) framework incorporating multimodal data from clinical notes and laboratory test results for the prediction of chronic disease risk. Our method combined a text embedding encoder and multi-head attention layer to learn laboratory test values, utilizing a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space. In our experiments, we observe that clinicalBERT and PubMed-BERT, when combined with attention fusion, can achieve an accuracy of 73% in multiclass chronic diseases and diabetes prediction. By transforming laboratory test values into textual descriptions and employing the Flan T-5 model, we achieved a 76% Area Under the ROC Curve (AUROC), demonstrating the effectiveness of leveraging numerical text data for training and inference in language models. This approach significantly improves the accuracy of early-stage diabetes prediction.
Abstract:Self-supervised learning (SSL) has been incorporated into many state-of-the-art models in various domains, where SSL defines pretext tasks based on unlabeled datasets to learn contextualized and robust representations. Recently, SSL has been a new trend in exploring the representation learning capability in the realm of tabular data, which is more challenging due to not having explicit relations for learning descriptive representations. This survey aims to systematically review and summarize the recent progress and challenges of SSL for non-sequential tabular data (SSL4NS-TD). We first present a formal definition of NS-TD and clarify its correlation to related studies. Then, these approaches are categorized into three groups -- predictive learning, contrastive learning, and hybrid learning, with their motivations and strengths of representative methods within each direction. On top of this, application issues of SSL4NS-TD are presented, including automatic data engineering, cross-table transferability, and domain knowledge integration. In addition, we elaborate on existing benchmarks and datasets for NS-TD applications to discuss the performance of existing tabular models. Finally, we discuss the challenges of SSL4NS-TD and provide potential directions for future research. We expect our work to be useful in terms of encouraging more research on lowering the barrier to entry SSL for the tabular domain and improving the foundations for implicit tabular data.
Abstract:In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at https://github.com/zmlin1998/RUN.