National Chiao Tung University, Taiwan
Abstract:The demand for property valuation has attracted significant attention from sellers, buyers, and customers applying for loans. Reviews of existing approaches have revealed shortcomings in terms of not being able to handle missing value situations, as well as lacking interpretability, which means they cannot be used in real-world applications. To address these challenges, we propose an LLM-Generated EXplainable PRopErty valuation SyStem with neighbor imputation called EXPRESS, which provides the customizable missing value imputation technique, and addresses the opaqueness of prediction by providing the feature-wise explanation generated by LLM. The dynamic nearest neighbor search finds similar properties depending on different application scenarios by property configuration set by users (e.g., house age as criteria for the house in rural areas, and locations for buildings in urban areas). Motivated by the human appraisal procedure, we generate feature-wise explanations to provide users with a more intuitive understanding of the prediction results.
Abstract:With the rapid advancement of generative AI, AI-generated images have become increasingly realistic, raising concerns about creativity, misinformation, and content authenticity. Detecting such images and identifying their source models has become a critical challenge in ensuring the integrity of digital media. This paper tackles the detection of AI-generated images and identifying their source models using CNN and CLIP-ViT classifiers. For the CNN-based classifier, we leverage EfficientNet-B0 as the backbone and feed with RGB channels, frequency features, and reconstruction errors, while for CLIP-ViT, we adopt a pretrained CLIP image encoder to extract image features and SVM to perform classification. Evaluated on the Defactify 4 dataset, our methods demonstrate strong performance in both tasks, with CLIP-ViT showing superior robustness to image perturbations. Compared to baselines like AEROBLADE and OCC-CLIP, our approach achieves competitive results. Notably, our method ranked Top-3 overall in the Defactify 4 competition, highlighting its effectiveness and generalizability. All of our implementations can be found in https://github.com/uuugaga/Defactify_4
Abstract:Stackelberg games, widely applied in domains like economics and security, involve asymmetric interactions where a leader's strategy drives follower responses. Accurately modeling these dynamics allows domain experts to optimize strategies in interactive scenarios, such as turn-based sports like badminton. In multi-agent systems, agent behaviors are interdependent, and traditional Multi-Agent Imitation Learning (MAIL) methods often fail to capture these complex interactions. Correlated policies, which account for opponents' strategies, are essential for accurately modeling such dynamics. However, even methods designed for learning correlated policies, like CoDAIL, struggle in Stackelberg games due to their asymmetric decision-making, where leaders and followers cannot simultaneously account for each other's actions, often leading to non-correlated policies. Furthermore, existing MAIL methods that match occupancy measures or use adversarial techniques like GAIL or Inverse RL face scalability challenges, particularly in high-dimensional environments, and suffer from unstable training. To address these challenges, we propose a correlated policy occupancy measure specifically designed for Stackelberg games and introduce the Latent Stackelberg Differential Network (LSDN) to match it. LSDN models two-agent interactions as shared latent state trajectories and uses multi-output Geometric Brownian Motion (MO-GBM) to effectively capture joint policies. By leveraging MO-GBM, LSDN disentangles environmental influences from agent-driven transitions in latent space, enabling the simultaneous learning of interdependent policies. This design eliminates the need for adversarial training and simplifies the learning process. Extensive experiments on Iterative Matrix Games and multi-agent particle environments demonstrate that LSDN can better reproduce complex interaction dynamics than existing MAIL methods.
Abstract:Machine Translation (MT) has been predominantly designed for sentence-level translation using transformer-based architectures. While next-token prediction based Large Language Models (LLMs) demonstrate strong capabilities in long-text translation, non-extensive language models often suffer from omissions and semantic inconsistencies when processing paragraphs. Existing preference alignment methods improve sentence-level translation but fail to ensure coherence over extended contexts due to the myopic nature of next-token generation. We introduce Plan2Align, a test-time alignment framework that treats translation as a predictive planning problem, adapting Model Predictive Control to iteratively refine translation outputs. Experiments on WMT24 Discourse-Level Literary Translation show that Plan2Align significantly improves paragraph-level translation, achieving performance surpassing or on par with the existing training-time and test-time alignment methods on LLaMA-3.1 8B.
Abstract:Tabular data are fundamental in common machine learning applications, ranging from finance to genomics and healthcare. This paper focuses on tabular regression tasks, a field where deep learning (DL) methods are not consistently superior to machine learning (ML) models due to the challenges posed by irregular target functions inherent in tabular data, causing sensitive label changes with minor variations from features. To address these issues, we propose a novel Arithmetic-Aware Pre-training and Adaptive-Regularized Fine-tuning framework (APAR), which enables the model to fit irregular target function in tabular data while reducing the negative impact of overfitting. In the pre-training phase, APAR introduces an arithmetic-aware pretext objective to capture intricate sample-wise relationships from the perspective of continuous labels. In the fine-tuning phase, a consistency-based adaptive regularization technique is proposed to self-learn appropriate data augmentation. Extensive experiments across 10 datasets demonstrated that APAR outperforms existing GBDT-, supervised NN-, and pretrain-finetune NN-based methods in RMSE (+9.43% $\sim$ 20.37%), and empirically validated the effects of pre-training tasks, including the study of arithmetic operations. Our code and data are publicly available at https://github.com/johnnyhwu/APAR.
Abstract:Traditional time series forecasting models mainly rely on historical numeric values to predict future outcomes.While these models have shown promising results, they often overlook the rich information available in other modalities, such as textual descriptions of special events, which can provide crucial insights into future dynamics.However, research that jointly incorporates text in time series forecasting remains relatively underexplored compared to other cross-modality work. Additionally, the modality gap between time series data and textual information poses a challenge for multimodal learning. To address this task, we propose Text2Freq, a cross-modality model that integrates text and time series data via the frequency domain. Specifically, our approach aligns textual information to the low-frequency components of time series data, establishing more effective and interpretable alignments between these two modalities. Our experiments on paired datasets of real-world stock prices and synthetic texts show that Text2Freq achieves state-of-the-art performance, with its adaptable architecture encouraging future research in this field.
Abstract:Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.
Abstract:Electronic health records (EHRs) are multimodal by nature, consisting of structured tabular features like lab tests and unstructured clinical notes. In real-life clinical practice, doctors use complementary multimodal EHR data sources to get a clearer picture of patients' health and support clinical decision-making. However, most EHR predictive models do not reflect these procedures, as they either focus on a single modality or overlook the inter-modality interactions/redundancy. In this work, we propose MEDFuse, a Multimodal EHR Data Fusion framework that incorporates masked lab-test modeling and large language models (LLMs) to effectively integrate structured and unstructured medical data. MEDFuse leverages multimodal embeddings extracted from two sources: LLMs fine-tuned on free clinical text and masked tabular transformers trained on structured lab test results. We design a disentangled transformer module, optimized by a mutual information loss to 1) decouple modality-specific and modality-shared information and 2) extract useful joint representation from the noise and redundancy present in clinical notes. Through comprehensive validation on the public MIMIC-III dataset and the in-house FEMH dataset, MEDFuse demonstrates great potential in advancing clinical predictions, achieving over 90% F1 score in the 10-disease multi-label classification task.
Abstract:Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and high dimensionality from hundreds of sensors. These datasets also include domain-specific expert knowledge and chronological order information, reflecting the recording order across different machines, which is pivotal for discerning causal relationships within the manufacturing data. However, previous methods for handling missing data in scenarios akin to real-world conditions have not been able to effectively utilize expert knowledge. Conversely, prior methods that can incorporate expert knowledge struggle with datasets that exhibit missing values. Therefore, we propose COKE to construct causal graphs in manufacturing datasets by leveraging expert knowledge and chronological order among sensors without imputing missing data. Utilizing the characteristics of the recipe, we maximize the use of samples with missing values, derive embeddings from intersections with an initial graph that incorporates expert knowledge and chronological order, and create a sensor ordering graph. The graph-generating process has been optimized by an actor-critic architecture to obtain a final graph that has a maximum reward. Experimental evaluations in diverse settings of sensor quantities and missing proportions demonstrate that our approach compared with the benchmark methods shows an average improvement of 39.9% in the F1-score. Moreover, the F1-score improvement can reach 62.6% when considering the configuration similar to real-world datasets, and 85.0% in real-world semiconductor datasets. The source code is available at https://github.com/OuTingYun/COKE.
Abstract:Badminton enjoys widespread popularity, and reports on matches generally include details such as player names, game scores, and ball types, providing audiences with a comprehensive view of the games. However, writing these reports can be a time-consuming task. This challenge led us to explore whether a Large Language Model (LLM) could automate the generation and evaluation of badminton reports. We introduce a novel framework named BADGE, designed for this purpose using LLM. Our method consists of two main phases: Report Generation and Report Evaluation. Initially, badminton-related data is processed by the LLM, which then generates a detailed report of the match. We tested different Input Data Types, In-Context Learning (ICL), and LLM, finding that GPT-4 performs best when using CSV data type and the Chain of Thought prompting. Following report generation, the LLM evaluates and scores the reports to assess their quality. Our comparisons between the scores evaluated by GPT-4 and human judges show a tendency to prefer GPT-4 generated reports. Since the application of LLM in badminton reporting remains largely unexplored, our research serves as a foundational step for future advancements in this area. Moreover, our method can be extended to other sports games, thereby enhancing sports promotion. For more details, please refer to https://github.com/AndyChiangSH/BADGE.