Abstract:Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.
Abstract:Multivariate time-series data in numerous real-world applications (e.g., healthcare and industry) are informative but challenging due to the lack of labels and high dimensionality. Recent studies in self-supervised learning have shown their potential in learning rich representations without relying on labels, yet they fall short in learning disentangled embeddings and addressing issues of inductive bias (e.g., transformation-invariance). To tackle these challenges, we propose TimeDRL, a generic multivariate time-series representation learning framework with disentangled dual-level embeddings. TimeDRL is characterized by three novel features: (i) disentangled derivation of timestamp-level and instance-level embeddings from patched time-series data using a [CLS] token strategy; (ii) utilization of timestamp-predictive and instance-contrastive tasks for disentangled representation learning, with the former optimizing timestamp-level embeddings with predictive loss, and the latter optimizing instance-level embeddings with contrastive loss; and (iii) avoidance of augmentation methods to eliminate inductive biases, such as transformation-invariance from cropping and masking. Comprehensive experiments on 6 time-series forecasting datasets and 5 time-series classification datasets have shown that TimeDRL consistently surpasses existing representation learning approaches, achieving an average improvement of forecasting by 57.98% in MSE and classification by 1.25% in accuracy. Furthermore, extensive ablation studies confirmed the relative contribution of each component in TimeDRL's architecture, and semi-supervised learning evaluations demonstrated its effectiveness in real-world scenarios, even with limited labeled data.
Abstract:In this work, we leverage pre-trained Large Language Models (LLMs) to enhance time-series forecasting. Mirroring the growing interest in unifying models for Natural Language Processing and Computer Vision, we envision creating an analogous model for long-term time-series forecasting. Due to limited large-scale time-series data for building robust foundation models, our approach LLM4TS focuses on leveraging the strengths of pre-trained LLMs. By combining time-series patching with temporal encoding, we have enhanced the capability of LLMs to handle time-series data effectively. Inspired by the supervised fine-tuning in chatbot domains, we prioritize a two-stage fine-tuning process: first conducting supervised fine-tuning to orient the LLM towards time-series data, followed by task-specific downstream fine-tuning. Furthermore, to unlock the flexibility of pre-trained LLMs without extensive parameter adjustments, we adopt several Parameter-Efficient Fine-Tuning (PEFT) techniques. Drawing on these innovations, LLM4TS has yielded state-of-the-art results in long-term forecasting. Our model has also shown exceptional capabilities as both a robust representation learner and an effective few-shot learner, thanks to the knowledge transferred from the pre-trained LLM.