Abstract:This work presents the first systematic investigation of speech bias in multilingual MLLMs. We construct and release the BiasInEar dataset, a speech-augmented benchmark based on Global MMLU Lite, spanning English, Chinese, and Korean, balanced by gender and accent, and totaling 70.8 hours ($\approx$4,249 minutes) of speech with 11,200 questions. Using four complementary metrics (accuracy, entropy, APES, and Fleiss' $κ$), we evaluate nine representative models under linguistic (language and accent), demographic (gender), and structural (option order) perturbations. Our findings reveal that MLLMs are relatively robust to demographic factors but highly sensitive to language and option order, suggesting that speech can amplify existing structural biases. Moreover, architectural design and reasoning strategy substantially affect robustness across languages. Overall, this study establishes a unified framework for assessing fairness and robustness in speech-integrated LLMs, bridging the gap between text- and speech-based evaluation. The resources can be found at https://github.com/ntunlplab/BiasInEar.
Abstract:Large audio-language models (LALMs) are often used in tasks that involve reasoning over ordered options. An open question is whether their predictions are influenced by the order of answer choices, which would indicate a form of selection bias and undermine their reliability. In this paper, we identify and analyze this problem in LALMs. We demonstrate that no model is immune to this bias through extensive experiments on six LALMs across three widely used benchmarks and their spoken counterparts. Shuffling the order of answer options can cause performance fluctuations of up to 24% and even change model rankings, raising concerns about the reliability of current evaluation practices. We also study permutation-based strategies and show that they can mitigate bias in most cases. Our work represents the first systematic investigation of this issue in LALMs, and we hope it raises awareness and motivates further research in this direction.
Abstract:In this paper, we investigate the phenomena of "selection biases" in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs' decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.