Abstract:According to the stages-of-inference hypothesis, early layers of language models map their subword-tokenized input, which does not necessarily correspond to a linguistically meaningful segmentation, to more meaningful representations that form the model's ``inner vocabulary''. Prior analysis of this detokenization stage has predominantly relied on probing and interventions such as path patching, which involve selecting particular inputs, choosing a subset of components that will be patched, and then observing changes in model behavior. Here, we show that several important aspects of the detokenization stage can be understood purely by analyzing model weights, without performing any model inference steps. Specifically, we introduce an analytical decomposition of first-layer attention in GPT-2. Our decomposition yields interpretable terms that quantify the relative contributions of position-related, token-related, and mixed effects. By focusing on terms in this decomposition, we discover weight-based explanations of attention bias toward close tokens and attention for detokenization.
Abstract:Large language models (LLMs) have achieved impressive performance on various reasoning tasks. To further improve the performance, we propose MultiTool-CoT, a novel framework that leverages chain-of-thought (CoT) prompting to incorporate multiple external tools, such as a calculator and a knowledge retriever, during the reasoning process. We apply MultiTool-CoT to the Task 2 dataset of NumGLUE, which requires both numerical reasoning and domain-specific knowledge. The experiments show that our method significantly outperforms strong baselines and achieves state-of-the-art performance.