Abstract:This study investigates the internal reasoning mechanism of language models during symbolic multi-step reasoning, motivated by the question of whether chain-of-thought (CoT) outputs are faithful to the model's internals. Specifically, we inspect when they internally determine their answers, particularly before or after CoT begins, to determine whether models follow a post-hoc "think-to-talk" mode or a step-by-step "talk-to-think" mode of explanation. Through causal probing experiments in controlled arithmetic reasoning tasks, we found systematic internal reasoning patterns across models; for example, simple subproblems are solved before CoT begins, and more complicated multi-hop calculations are performed during CoT.
Abstract:Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
Abstract:We explore visual prompt injection (VPI) that maliciously exploits the ability of large vision-language models (LVLMs) to follow instructions drawn onto the input image. We propose a new VPI method, "goal hijacking via visual prompt injection" (GHVPI), that swaps the execution task of LVLMs from an original task to an alternative task designated by an attacker. The quantitative analysis indicates that GPT-4V is vulnerable to the GHVPI and demonstrates a notable attack success rate of 15.8%, which is an unignorable security risk. Our analysis also shows that successful GHVPI requires high character recognition capability and instruction-following ability in LVLMs.
Abstract:This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs). LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose. This paper presents the background of the establishment of LLM-jp, summaries of its activities, and technical reports on the LLMs developed by LLM-jp. For the latest activities, visit https://llm-jp.nii.ac.jp/en/.
Abstract:Multi-step reasoning is widely adopted in the community to explore the better performance of language models (LMs). We report on the systematic strategy that LMs use in this process. Our controlled experiments reveal that LMs rely more heavily on heuristics, such as lexical overlap, in the earlier stages of reasoning when more steps are required to reach an answer. Conversely, as LMs progress closer to the final answer, their reliance on heuristics decreases. This suggests that LMs track only a limited number of future steps and dynamically combine heuristic strategies with logical ones in tasks involving multi-step reasoning.
Abstract:Language models (LMs) encode world knowledge in their internal parameters through training. However, LMs may learn personal and confidential information from the training data, leading to privacy concerns such as data leakage. Therefore, research on knowledge deletion from LMs is essential. This study focuses on the knowledge stored in LMs and analyzes the relationship between the side effects of knowledge deletion and the entities related to the knowledge. Our findings reveal that deleting knowledge related to popular entities can have catastrophic side effects. Furthermore, this research is the first to analyze knowledge deletion in models trained on synthetic knowledge graphs, indicating a new direction for controlled experiments.
Abstract:Evaluating free-text explanations is a multifaceted, subjective, and labor-intensive task. Large language models (LLMs) present an appealing alternative due to their potential for consistency, scalability, and cost-efficiency. In this work, we present ACORN, a new dataset of 3,500 free-text explanations and aspect-wise quality ratings, and use it to gain insights into how LLMs evaluate explanations. We observed that replacing one of the human ratings sometimes maintained, but more often lowered the inter-annotator agreement across different settings and quality aspects, suggesting that their judgments are not always consistent with human raters. We further quantified this difference by comparing the correlation between LLM-generated ratings with majority-voted human ratings across different quality aspects. With the best system, Spearman's rank correlation ranged between 0.53 to 0.95, averaging 0.72 across aspects, indicating moderately high but imperfect alignment. Finally, we considered the alternative of using an LLM as an additional rater when human raters are scarce, and measured the correlation between majority-voted labels with a limited human pool and LLMs as an additional rater, compared to the original gold labels. While GPT-4 improved the outcome when there were only two human raters, in all other observed cases, LLMs were neutral to detrimental when there were three or more human raters. We publicly release the dataset to support future improvements in LLM-in-the-loop evaluation here: https://github.com/a-brassard/ACORN.
Abstract:We introduce a Japanese Morphology dataset, J-UniMorph, developed based on the UniMorph feature schema. This dataset addresses the unique and rich verb forms characteristic of the language's agglutinative nature. J-UniMorph distinguishes itself from the existing Japanese subset of UniMorph, which is automatically extracted from Wiktionary. On average, the Wiktionary Edition features around 12 inflected forms for each word and is primarily dominated by denominal verbs (i.e., [noun] +suru (do-PRS)). Morphologically, this form is equivalent to the verb suru (do). In contrast, J-UniMorph explores a much broader and more frequently used range of verb forms, offering 118 inflected forms for each word on average. It includes honorifics, a range of politeness levels, and other linguistic nuances, emphasizing the distinctive characteristics of the Japanese language. This paper presents detailed statistics and characteristics of J-UniMorph, comparing it with the Wiktionary Edition. We release J-UniMorph and its interactive visualizer publicly available, aiming to support cross-linguistic research and various applications.
Abstract:Factual probing is a method that uses prompts to test if a language model "knows" certain world knowledge facts. A problem in factual probing is that small changes to the prompt can lead to large changes in model output. Previous work aimed to alleviate this problem by optimizing prompts via text mining or fine-tuning. However, such approaches are relation-specific and do not generalize to unseen relation types. Here, we propose to use test-time augmentation (TTA) as a relation-agnostic method for reducing sensitivity to prompt variations by automatically augmenting and ensembling prompts at test time. Experiments show improved model calibration, i.e., with TTA, model confidence better reflects prediction accuracy. Improvements in prediction accuracy are observed for some models, but for other models, TTA leads to degradation. Error analysis identifies the difficulty of producing high-quality prompt variations as the main challenge for TTA.
Abstract:Procedural planning, which entails decomposing a high-level goal into a sequence of temporally ordered steps, is an important yet intricate task for machines. It involves integrating common-sense knowledge to reason about complex contextualized situations that are often counterfactual, e.g. "scheduling a doctor's appointment without a phone". While current approaches show encouraging results using large language models (LLMs), they are hindered by drawbacks such as costly API calls and reproducibility issues. In this paper, we advocate planning using smaller language models. We present PlaSma, a novel two-pronged approach to endow small language models with procedural knowledge and (counterfactual) planning capabilities. More concretely, we develop symbolic procedural knowledge distillation to enhance the implicit knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning. In addition, we introduce a novel task, Counterfactual Planning, that requires a revision of a plan to cope with a counterfactual situation. In both the original and counterfactual setting, we show that orders-of-magnitude smaller models (770M-11B parameters) can compete and often surpass their larger teacher models' capabilities.