Abstract:A number of automatic evaluation metrics have been proposed for natural language generation systems. The most common approach to automatic evaluation is the use of a reference-based metric that compares the model's output with gold-standard references written by humans. However, it is expensive to create such references, and for some tasks, such as response generation in dialogue, creating references is not a simple matter. Therefore, various reference-free metrics have been developed in recent years. In this survey, which intends to cover the full breadth of all NLG tasks, we investigate the most commonly used approaches, their application, and their other uses beyond evaluating models. The survey concludes by highlighting some promising directions for future research.
Abstract:Elucidating the rationale behind neural models' outputs has been challenging in the machine learning field, which is indeed applicable in this age of large language models (LLMs) and in-context learning (ICL). When it comes to estimating input attributions (IA), ICL poses a new issue of interpreting which example in the prompt, consisting of a set of examples, contributed to identifying the task/rule to be solved. To this end, in this paper, we introduce synthetic diagnostic tasks inspired by the poverty of the stimulus design in inductive reasoning; here, most in-context examples are ambiguous w.r.t. their underlying rule, and one critical example disambiguates the task demonstrated. The question is whether conventional IA methods can identify such an example in interpreting the inductive reasoning process in ICL. Our experiments provide several practical findings; for example, a certain simple IA method works the best, and the larger the model, the generally harder it is to interpret the ICL with gradient-based IA methods.
Abstract:Multilingual large language models (MLLMs), trained on multilingual balanced data, demonstrate better zero-shot learning performance in non-English languages compared to large language models trained on English-dominant data. However, the disparity in performance between English and non-English languages remains a challenge yet to be fully addressed. A distinctive characteristic of MLLMs is their high-quality translation capabilities, indicating an acquired proficiency in aligning between languages. This study explores how to enhance the zero-shot performance of MLLMs in non-English languages by leveraging their alignment capability between English and non-English languages. To achieve this, we first analyze the behavior of MLLMs when performing translation and reveal that there are large magnitude features that play a critical role in the translation process. Inspired by these findings, we retain the weights associated with operations involving the large magnitude features and prune other weights to force MLLMs to rely on these features for tasks beyond translation. We empirically demonstrate that this pruning strategy can enhance the MLLMs' performance in non-English language.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:We explore visual prompt injection (VPI) that maliciously exploits the ability of large vision-language models (LVLMs) to follow instructions drawn onto the input image. We propose a new VPI method, "goal hijacking via visual prompt injection" (GHVPI), that swaps the execution task of LVLMs from an original task to an alternative task designated by an attacker. The quantitative analysis indicates that GPT-4V is vulnerable to the GHVPI and demonstrates a notable attack success rate of 15.8%, which is an unignorable security risk. Our analysis also shows that successful GHVPI requires high character recognition capability and instruction-following ability in LVLMs.
Abstract:This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs). LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose. This paper presents the background of the establishment of LLM-jp, summaries of its activities, and technical reports on the LLMs developed by LLM-jp. For the latest activities, visit https://llm-jp.nii.ac.jp/en/.
Abstract:With the remarkable development of large language models (LLMs), ensuring the factuality of output has become a challenge. However, having all the contents of the response with given knowledge or facts is not necessarily a good thing in dialogues. This study aimed to achieve both attractiveness and factuality in a dialogue response for which a task was set to predict sentences that do not require factual correctness judgment such as agreeing, or personal opinions/feelings. We created a dataset, dialogue dataset annotated with fact-check-needed label (DDFC), for this task via crowdsourcing, and classification tasks were performed on several models using this dataset. The model with the highest classification accuracy could yield about 88% accurate classification results.
Abstract:Mitigating the generation of contradictory responses poses a substantial challenge in dialogue response generation. The quality and quantity of available contradictory response data play a vital role in suppressing these contradictions, offering two significant benefits. First, having access to large contradiction data enables a comprehensive examination of their characteristics. Second, data-driven methods to mitigate contradictions may be enhanced with large-scale contradiction data for training. Nevertheless, no attempt has been made to build an extensive collection of model-generated contradictory responses. In this paper, we build a large dataset of response generation models' contradictions for the first time. Then, we acquire valuable insights into the characteristics of model-generated contradictions through an extensive analysis of the collected responses. Lastly, we also demonstrate how this dataset substantially enhances the performance of data-driven contradiction suppression methods.
Abstract:We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.