Abstract:Loss spikes, a phenomenon in which the loss value diverges suddenly, is a fundamental issue in the pre-training of large language models. This paper supposes that the non-uniformity of the norm of the parameters is one of the causes of loss spikes. Here, in training of neural networks, the scale of the gradients is required to be kept constant throughout the layers to avoid the vanishing and exploding gradients problem. However, to meet these requirements in the Transformer model, the norm of the model parameters must be non-uniform, and thus, parameters whose norm is smaller are more sensitive to the parameter update. To address this issue, we propose a novel technique, weight scaling as reparameterization (WeSaR). WeSaR introduces a gate parameter per parameter matrix and adjusts it to the value satisfying the requirements. Because of the gate parameter, WeSaR sets the norm of the original parameters uniformly, which results in stable training. Experimental results with the Transformer decoders consisting of 130 million, 1.3 billion, and 13 billion parameters showed that WeSaR stabilizes and accelerates training and that it outperformed compared methods including popular initialization methods.
Abstract:We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
Abstract:Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not across multiple images. In this study, we propose a new multi-image document VQA dataset, SlideVQA, containing 2.6k+ slide decks composed of 52k+ slide images and 14.5k questions about a slide deck. SlideVQA requires complex reasoning, including single-hop, multi-hop, and numerical reasoning, and also provides annotated arithmetic expressions of numerical answers for enhancing the ability of numerical reasoning. Moreover, we developed a new end-to-end document VQA model that treats evidence selection and question answering in a unified sequence-to-sequence format. Experiments on SlideVQA show that our model outperformed existing state-of-the-art QA models, but that it still has a large gap behind human performance. We believe that our dataset will facilitate research on document VQA.