Abstract:Existing Theory of Mind (ToM) benchmarks diverge from real-world scenarios in three aspects: 1) they assess a limited range of mental states such as beliefs, 2) false beliefs are not comprehensively explored, and 3) the diverse personality traits of characters are overlooked. To address these challenges, we introduce ToMATO, a new ToM benchmark formulated as multiple-choice QA over conversations. ToMATO is generated via LLM-LLM conversations featuring information asymmetry. By employing a prompting method that requires role-playing LLMs to verbalize their thoughts before each utterance, we capture both first- and second-order mental states across five categories: belief, intention, desire, emotion, and knowledge. These verbalized thoughts serve as answers to questions designed to assess the mental states of characters within conversations. Furthermore, the information asymmetry introduced by hiding thoughts from others induces the generation of false beliefs about various mental states. Assigning distinct personality traits to LLMs further diversifies both utterances and thoughts. ToMATO consists of 5.4k questions, 753 conversations, and 15 personality trait patterns. Our analysis shows that this dataset construction approach frequently generates false beliefs due to the information asymmetry between role-playing LLMs, and effectively reflects diverse personalities. We evaluate nine LLMs on ToMATO and find that even GPT-4o mini lags behind human performance, especially in understanding false beliefs, and lacks robustness to various personality traits.
Abstract:A hybrid autoregressive transducer (HAT) is a variant of neural transducer that models blank and non-blank posterior distributions separately. In this paper, we propose a novel internal acoustic model (IAM) training strategy to enhance HAT-based speech recognition. IAM consists of encoder and joint networks, which are fully shared and jointly trained with HAT. This joint training not only enhances the HAT training efficiency but also encourages IAM and HAT to emit blanks synchronously which skips the more expensive non-blank computation, resulting in more effective blank thresholding for faster decoding. Experiments demonstrate that the relative error reductions of the HAT with IAM compared to the vanilla HAT are statistically significant. Moreover, we introduce dual blank thresholding, which combines both HAT- and IAM-blank thresholding and a compatible decoding algorithm. This results in a 42-75% decoding speed-up with no major performance degradation.
Abstract:Extending the RNN Transducer (RNNT) to recognize multi-talker speech is essential for wider automatic speech recognition (ASR) applications. Multi-talker RNNT (MT-RNNT) aims to achieve recognition without relying on costly front-end source separation. MT-RNNT is conventionally implemented using architectures with multiple encoders or decoders, or by serializing all speakers' transcriptions into a single output stream. The first approach is computationally expensive, particularly due to the need for multiple encoder processing. In contrast, the second approach involves a complex label generation process, requiring accurate timestamps of all words spoken by all speakers in the mixture, obtained from an external ASR system. In this paper, we propose a novel alignment-free training scheme for the MT-RNNT (MT-RNNT-AFT) that adopts the standard RNNT architecture. The target labels are created by appending a prompt token corresponding to each speaker at the beginning of the transcription, reflecting the order of each speaker's appearance in the mixtures. Thus, MT-RNNT-AFT can be trained without relying on accurate alignments, and it can recognize all speakers' speech with just one round of encoder processing. Experiments show that MT-RNNT-AFT achieves performance comparable to that of the state-of-the-art alternatives, while greatly simplifying the training process.
Abstract:This paper presents a novel speaking-style captioning method that generates diverse descriptions while accurately predicting speaking-style information. Conventional learning criteria directly use original captions that contain not only speaking-style factor terms but also syntax words, which disturbs learning speaking-style information. To solve this problem, we introduce factor-conditioned captioning (FCC), which first outputs a phrase representing speaking-style factors (e.g., gender, pitch, etc.), and then generates a caption to ensure the model explicitly learns speaking-style factors. We also propose greedy-then-sampling (GtS) decoding, which first predicts speaking-style factors deterministically to guarantee semantic accuracy, and then generates a caption based on factor-conditioned sampling to ensure diversity. Experiments show that FCC outperforms the original caption-based training, and with GtS, it generates more diverse captions while keeping style prediction performance.
Abstract:This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degrades the standard accuracy, thus yielding the tradeoff. To mitigate this tradeoff, we propose a novel AT method called ARREST, which comprises three components: (i) adversarial finetuning (AFT), (ii) representation-guided knowledge distillation (RGKD), and (iii) noisy replay (NR). AFT trains a DNN on adversarial examples by initializing its parameters with a DNN that is standardly pretrained on clean examples. RGKD and NR respectively entail a regularization term and an algorithm to preserve latent representations of clean examples during AFT. RGKD penalizes the distance between the representations of the standardly pretrained and AFT DNNs. NR switches input adversarial examples to nonadversarial ones when the representation changes significantly during AFT. By combining these components, ARREST achieves both high standard accuracy and robustness. Experimental results demonstrate that ARREST mitigates the tradeoff more effectively than previous AT-based methods do.
Abstract:This paper proposes a novel automatic speech recognition (ASR) system that can transcribe individual speaker's speech while identifying whether they are target or non-target speakers from multi-talker overlapped speech. Target-speaker ASR systems are a promising way to only transcribe a target speaker's speech by enrolling the target speaker's information. However, in conversational ASR applications, transcribing both the target speaker's speech and non-target speakers' ones is often required to understand interactive information. To naturally consider both target and non-target speakers in a single ASR model, our idea is to extend autoregressive modeling-based multi-talker ASR systems to utilize the enrollment speech of the target speaker. Our proposed ASR is performed by recursively generating both textual tokens and tokens that represent target or non-target speakers. Our experiments demonstrate the effectiveness of our proposed method.
Abstract:Neural transducer (RNNT)-based target-speaker speech recognition (TS-RNNT) directly transcribes a target speaker's voice from a multi-talker mixture. It is a promising approach for streaming applications because it does not incur the extra computation costs of a target speech extraction frontend, which is a critical barrier to quick response. TS-RNNT is trained end-to-end given the input speech (i.e., mixtures and enrollment speech) and reference transcriptions. The training mixtures are generally simulated by mixing single-talker signals, but conventional TS-RNNT training does not utilize single-speaker signals. This paper proposes using knowledge distillation (KD) to exploit the parallel mixture/single-talker speech data. Our proposed KD scheme uses an RNNT system pretrained with the target single-talker speech input to generate pseudo labels for the TS-RNNT training. Experimental results show that TS-RNNT systems trained with the proposed KD scheme outperform a baseline TS-RNNT.
Abstract:The recurrent neural network-transducer (RNNT) is a promising approach for automatic speech recognition (ASR) with the introduction of a prediction network that autoregressively considers linguistic aspects. To train the autoregressive part, the ground-truth tokens are used as substitutions for the previous output token, which leads to insufficient robustness to incorrect past tokens; a recognition error in the decoding leads to further errors. Scheduled sampling (SS) is a technique to train autoregressive model robustly to past errors by randomly replacing some ground-truth tokens with actual outputs generated from a model. SS mitigates the gaps between training and decoding steps, known as exposure bias, and it is often used for attentional encoder-decoder training. However SS has not been fully examined for RNNT because of the difficulty in applying SS to RNNT due to the complicated RNNT output form. In this paper we propose SS approaches suited for RNNT. Our SS approaches sample the tokens generated from the distiribution of RNNT itself, i.e. internal language model or RNNT outputs. Experiments in three datasets confirm that RNNT trained with our SS approach achieves the best ASR performance. In particular, on a Japanese ASR task, our best system outperforms the previous state-of-the-art alternative.
Abstract:Self-supervised learning (SSL) is the latest breakthrough in speech processing, especially for label-scarce downstream tasks by leveraging massive unlabeled audio data. The noise robustness of the SSL is one of the important challenges to expanding its application. We can use speech enhancement (SE) to tackle this issue. However, the mismatch between the SE model and SSL models potentially limits its effect. In this work, we propose a new SE training criterion that minimizes the distance between clean and enhanced signals in the feature representation of the SSL model to alleviate the mismatch. We expect that the loss in the SSL domain could guide SE training to preserve or enhance various levels of characteristics of the speech signals that may be required for high-level downstream tasks. Experiments show that our proposal improves the performance of an SE and SSL pipeline on five downstream tasks with noisy input while maintaining the SE performance.
Abstract:End-to-end speech summarization (E2E SSum) is a technique to directly generate summary sentences from speech. Compared with the cascade approach, which combines automatic speech recognition (ASR) and text summarization models, the E2E approach is more promising because it mitigates ASR errors, incorporates nonverbal information, and simplifies the overall system. However, since collecting a large amount of paired data (i.e., speech and summary) is difficult, the training data is usually insufficient to train a robust E2E SSum system. In this paper, we present two novel methods that leverage a large amount of external text summarization data for E2E SSum training. The first technique is to utilize a text-to-speech (TTS) system to generate synthesized speech, which is used for E2E SSum training with the text summary. The second is a TTS-free method that directly inputs phoneme sequence instead of synthesized speech to the E2E SSum model. Experiments show that our proposed TTS- and phoneme-based methods improve several metrics on the How2 dataset. In particular, our best system outperforms a previous state-of-the-art one by a large margin (i.e., METEOR score improvements of more than 6 points). To the best of our knowledge, this is the first work to use external language resources for E2E SSum. Moreover, we report a detailed analysis of the How2 dataset to confirm the validity of our proposed E2E SSum system.