Abstract:While foundation models have been exploited for various expert tasks through fine-tuning, any foundation model will become outdated due to its old knowledge or limited capability. Thus the underlying foundation model should be eventually replaced by new ones, which leads to repeated cost of fine-tuning these new models. Existing work addresses this problem by inference-time tuning, i.e., modifying the output probabilities from the new foundation model with the outputs from the old foundation model and its fine-tuned model, which involves an additional overhead in inference by the latter two models. In this paper, we propose a new fine-tuning principle, Portable Reward Tuning (PRT), that reduces the inference overhead by its nature, based on the reformulation of fine-tuning as the reward maximization. Specifically, instead of fine-tuning parameters of the foundation models, PRT trains the reward model explicitly through the same loss function as in fine-tuning. During inference, the reward model can be used with any foundation model (with the same set of vocabularies or labels) through the formulation of reward maximization. Experimental results, covering both vision and language models, demonstrate that the PRT-trained model can achieve comparable accuracy to the existing work of inference-time tuning, with less inference cost.
Abstract:Randomly initialized dense networks contain subnetworks that achieve high accuracy without weight learning -- strong lottery tickets (SLTs). Recently, Gadhikar et al. (2023) demonstrated theoretically and experimentally that SLTs can also be found within a randomly pruned source network, thus reducing the SLT search space. However, this limits the search to SLTs that are even sparser than the source, leading to worse accuracy due to unintentionally high sparsity. This paper proposes a method that reduces the SLT search space by an arbitrary ratio that is independent of the desired SLT sparsity. A random subset of the initial weights is excluded from the search space by freezing it -- i.e., by either permanently pruning them or locking them as a fixed part of the SLT. Indeed, the SLT existence in such a reduced search space is theoretically guaranteed by our subset-sum approximation with randomly frozen variables. In addition to reducing search space, the random freezing pattern can also be exploited to reduce model size in inference. Furthermore, experimental results show that the proposed method finds SLTs with better accuracy and model size trade-off than the SLTs obtained from dense or randomly pruned source networks. In particular, the SLT found in a frozen graph neural network achieves higher accuracy than its weight trained counterpart while reducing model size by $40.3\times$.