Abstract:The performance and usability of Large-Language Models (LLMs) are driving their use in explanation generation tasks. However, despite their widespread adoption, LLM explanations have been found to be unreliable, making it difficult for users to distinguish good from bad explanations. To address this issue, we present Rubrik's CUBE, an education-inspired rubric and a dataset of 26k explanations, written and later quality-annotated using the rubric by both humans and six open- and closed-source LLMs. The CUBE dataset focuses on two reasoning and two language tasks, providing the necessary diversity for us to effectively test our proposed rubric. Using Rubrik, we find that explanations are influenced by both task and perceived difficulty. Low quality stems primarily from a lack of conciseness in LLM-generated explanations, rather than cohesion and word choice. The full dataset, rubric, and code will be made available upon acceptance.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:In this paper, we describe the development of a communication support system that detects erroneous translations to facilitate crosslingual communications due to the limitations of current machine chat translation methods. We trained an error detector as the baseline of the system and constructed a new Japanese-English bilingual chat corpus, BPersona-chat, which comprises multiturn colloquial chats augmented with crowdsourced quality ratings. The error detector can serve as an encouraging foundation for more advanced erroneous translation detection systems.