Abstract:This study investigates the internal reasoning mechanism of language models during symbolic multi-step reasoning, motivated by the question of whether chain-of-thought (CoT) outputs are faithful to the model's internals. Specifically, we inspect when they internally determine their answers, particularly before or after CoT begins, to determine whether models follow a post-hoc "think-to-talk" mode or a step-by-step "talk-to-think" mode of explanation. Through causal probing experiments in controlled arithmetic reasoning tasks, we found systematic internal reasoning patterns across models; for example, simple subproblems are solved before CoT begins, and more complicated multi-hop calculations are performed during CoT.
Abstract:Multi-step reasoning is widely adopted in the community to explore the better performance of language models (LMs). We report on the systematic strategy that LMs use in this process. Our controlled experiments reveal that LMs rely more heavily on heuristics, such as lexical overlap, in the earlier stages of reasoning when more steps are required to reach an answer. Conversely, as LMs progress closer to the final answer, their reliance on heuristics decreases. This suggests that LMs track only a limited number of future steps and dynamically combine heuristic strategies with logical ones in tasks involving multi-step reasoning.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:The world's languages exhibit certain so-called typological or implicational universals; for example, Subject-Object-Verb (SOV) word order typically employs postpositions. Explaining the source of such biases is a key goal in linguistics. We study the word-order universals through a computational simulation with language models (LMs). Our experiments show that typologically typical word orders tend to have lower perplexity estimated by LMs with cognitively plausible biases: syntactic biases, specific parsing strategies, and memory limitations. This suggests that the interplay of these cognitive biases and predictability (perplexity) can explain many aspects of word-order universals. This also showcases the advantage of cognitively-motivated LMs, which are typically employed in cognitive modeling, in the computational simulation of language universals.
Abstract:Next-word probabilities from language models have been shown to successfully simulate human reading behavior. Building on this, we show that, interestingly, instruction-tuned large language models (LLMs) yield worse psychometric predictive power (PPP) for human reading behavior than base LLMs with equivalent perplexities. In other words, instruction tuning, which helps LLMs provide human-preferred responses, does not always make them human-like from the computational psycholinguistics perspective. In addition, we explore prompting methodologies in simulating human reading behavior with LLMs, showing that prompts reflecting a particular linguistic hypothesis lead LLMs to exhibit better PPP but are still worse than base LLMs. These highlight that recent instruction tuning and prompting do not offer better estimates than direct probability measurements from base LLMs in cognitive modeling.
Abstract:Large language models (LLMs) take advantage of step-by-step reasoning instructions, e.g., chain-of-thought (CoT) prompting. Building on this, their ability to perform CoT-style reasoning robustly is of interest from a probing perspective. In this study, we inspect the step-by-step reasoning ability of LLMs with a focus on negation, which is a core linguistic phenomenon that is difficult to process. In particular, we introduce several controlled settings (e.g., reasoning in case of fictional entities) to evaluate the logical reasoning abilities of the models. We observed that dozens of modern LLMs were not robust against lexical negation (e.g., plausible ->implausible) when performing CoT-style reasoning, and the results highlight unique limitations in each LLM family.
Abstract:With the success of neural language models (LMs), their language acquisition has gained much attention. This work sheds light on the second language (L2) acquisition of LMs, while previous work has typically explored their first language (L1) acquisition. Specifically, we trained bilingual LMs with a scenario similar to human L2 acquisition and analyzed their cross-lingual transfer from linguistic perspectives. Our exploratory experiments demonstrated that the L1 pretraining accelerated their linguistic generalization in L2, and language transfer configurations (e.g., the L1 choice, and presence of parallel texts) substantially affected their generalizations. These clarify their (non-)human-like L2 acquisition in particular aspects.
Abstract:Prediction head is a crucial component of Transformer language models. Despite its direct impact on prediction, this component has often been overlooked in analyzing Transformers. In this study, we investigate the inner workings of the prediction head, specifically focusing on bias parameters. Our experiments with BERT and GPT-2 models reveal that the biases in their word prediction heads play a significant role in the models' ability to reflect word frequency in a corpus, aligning with the logit adjustment method commonly used in long-tailed learning. We also quantify the effect of controlling the biases in practical auto-regressive text generation scenarios; under a particular setting, more diverse text can be generated without compromising text quality.
Abstract:Neural reasoning accuracy improves when generating intermediate reasoning steps. However, the source of this improvement is yet unclear. Here, we investigate and factorize the benefit of generating intermediate steps for symbolic reasoning. Specifically, we decompose the reasoning strategy w.r.t. step granularity and chaining strategy. With a purely symbolic numerical reasoning dataset (e.g., A=1, B=3, C=A+3, C?), we found that the choice of reasoning strategies significantly affects the performance, with the gap becoming even larger as the extrapolation length becomes longer. Surprisingly, we also found that certain configurations lead to nearly perfect performance, even in the case of length extrapolation. Our results indicate the importance of further exploring effective strategies for neural reasoning models.
Abstract:Compositionality is a pivotal property of symbolic reasoning. However, how well recent neural models capture compositionality remains underexplored in the symbolic reasoning tasks. This study empirically addresses this question by systematically examining recently published pre-trained seq2seq models with a carefully controlled dataset of multi-hop arithmetic symbolic reasoning. We introduce a skill tree on compositionality in arithmetic symbolic reasoning that defines the hierarchical levels of complexity along with three compositionality dimensions: systematicity, productivity, and substitutivity. Our experiments revealed that among the three types of composition, the models struggled most with systematicity, performing poorly even with relatively simple compositions. That difficulty was not resolved even after training the models with intermediate reasoning steps.