Abstract:Recent developments, particularly OpenAI's O1 model, have demonstrated the remarkable potential of Large Language Models (LLMs) for complex reasoning tasks. Through analysis of O1's outputs and provided sample Chain-of-Thought (CoT) demonstrations, we observe that it approaches problem-solving in a distinctly human-like manner, systematically brainstorming ideas, testing hypotheses, verifying results, and planning comprehensive solutions. These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models. In this paper, we hypothesize that this performance gap stems from the limited availability of high-quality reasoning process data in current training sets. We demonstrate that by constructing a specialized dataset focused on explicit problem-solving workflows ("worked solutions"), we can elicit substantially improved planning capabilities from existing models. Additionally, we propose the Reasoning Enhancement Loop (REL), a method for generating synthetic worked solutions.
Abstract:We propose WHoW, an evaluation framework for analyzing the facilitation strategies of moderators across different domains/scenarios by examining their motives (Why), dialogue acts (How) and target speaker (Who). Using this framework, we annotated 5,657 moderation sentences with human judges and 15,494 sentences with GPT-4o from two domains: TV debates and radio panel discussions. Comparative analysis demonstrates the framework's cross-domain generalisability and reveals distinct moderation strategies: debate moderators emphasise coordination and facilitate interaction through questions and instructions, while panel discussion moderators prioritize information provision and actively participate in discussions. Our analytical framework works for different moderation scenarios, enhances our understanding of moderation behaviour through automatic large-scale analysis, and facilitates the development of moderator agents.
Abstract:We propose a novel approach to enhancing the performance and efficiency of large language models (LLMs) by combining domain prompt routing with domain-specialized models. We introduce a system that utilizes a BERT-based router to direct incoming prompts to the most appropriate domain expert model. These expert models are specifically tuned for domains such as health, mathematics and science. Our research demonstrates that this approach can significantly outperform general-purpose models of comparable size, leading to a superior performance-to-cost ratio across various benchmarks. The implications of this study suggest a potential paradigm shift in LLM development and deployment. Rather than focusing solely on creating increasingly large, general-purpose models, the future of AI may lie in developing ecosystems of smaller, highly specialized models coupled with sophisticated routing systems. This approach could lead to more efficient resource utilization, reduced computational costs, and superior overall performance.
Abstract:Exploring the narratives conveyed by fine-art paintings is a challenge in image captioning, where the goal is to generate descriptions that not only precisely represent the visual content but also offer a in-depth interpretation of the artwork's meaning. The task is particularly complex for artwork images due to their diverse interpretations and varied aesthetic principles across different artistic schools and styles. In response to this, we present KALE Knowledge-Augmented vision-Language model for artwork Elaborations), a novel approach that enhances existing vision-language models by integrating artwork metadata as additional knowledge. KALE incorporates the metadata in two ways: firstly as direct textual input, and secondly through a multimodal heterogeneous knowledge graph. To optimize the learning of graph representations, we introduce a new cross-modal alignment loss that maximizes the similarity between the image and its corresponding metadata. Experimental results demonstrate that KALE achieves strong performance (when evaluated with CIDEr, in particular) over existing state-of-the-art work across several artwork datasets. Source code of the project is available at https://github.com/Yanbei-Jiang/Artwork-Interpretation.
Abstract:We develop CNIMA (Chinese Non-Native Interactivity Measurement and Automation), a Chinese-as-a-second-language labelled dataset with 10K dialogues. We annotate CNIMA using an evaluation framework -- originally introduced for English-as-a-second-language dialogues -- that assesses micro-level features (e.g.\ backchannels) and macro-level interactivity labels (e.g.\ topic management) and test the framework's transferability from English to Chinese. We found the framework robust across languages and revealed universal and language-specific relationships between micro-level and macro-level features. Next, we propose an approach to automate the evaluation and find strong performance, creating a new tool for automated second language assessment. Our system can be adapted to other languages easily as it uses large language models and as such does not require large-scale annotated training data.
Abstract:Embeddings-as-a-Service (EaaS) is a service offered by large language model (LLM) developers to supply embeddings generated by LLMs. Previous research suggests that EaaS is prone to imitation attacks -- attacks that clone the underlying EaaS model by training another model on the queried embeddings. As a result, EaaS watermarks are introduced to protect the intellectual property of EaaS providers. In this paper, we first show that existing EaaS watermarks can be removed by paraphrasing when attackers clone the model. Subsequently, we propose a novel watermarking technique that involves linearly transforming the embeddings, and show that it is empirically and theoretically robust against paraphrasing.
Abstract:This paper explores the task of automatic prediction of text spans in a legal problem description that support a legal area label. We use a corpus of problem descriptions written by laypeople in English that is annotated by practising lawyers. Inherent subjectivity exists in our task because legal area categorisation is a complex task, and lawyers often have different views on a problem, especially in the face of legally-imprecise descriptions of issues. Experiments show that training on majority-voted spans outperforms training on disaggregated ones.
Abstract:We present an evaluation framework for interactive dialogue assessment in the context of English as a Second Language (ESL) speakers. Our framework collects dialogue-level interactivity labels (e.g., topic management; 4 labels in total) and micro-level span features (e.g., backchannels; 17 features in total). Given our annotated data, we study how the micro-level features influence the (higher level) interactivity quality of ESL dialogues by constructing various machine learning-based models. Our results demonstrate that certain micro-level features strongly correlate with interactivity quality, like reference word (e.g., she, her, he), revealing new insights about the interaction between higher-level dialogue quality and lower-level linguistic signals. Our framework also provides a means to assess ESL communication, which is useful for language assessment.
Abstract:Factual consistency is an important quality in dialogue summarization. Large language model (LLM)-based automatic text summarization models generate more factually consistent summaries compared to those by smaller pretrained language models, but they face deployment challenges in real-world applications due to privacy or resource constraints. In this paper, we investigate the use of symbolic knowledge distillation to improve the factual consistency of smaller pretrained models for dialogue summarization. We employ zero-shot learning to extract symbolic knowledge from LLMs, generating both factually consistent (positive) and inconsistent (negative) summaries. We then apply two contrastive learning objectives on these summaries to enhance smaller summarization models. Experiments with BART, PEGASUS, and Flan-T5 indicate that our approach surpasses strong baselines that rely on complex data augmentation strategies. Our approach achieves better factual consistency while maintaining coherence, fluency, and relevance, as confirmed by various automatic evaluation metrics. We also provide access to the data and code to facilitate future research.
Abstract:An important factor when it comes to generating fact-checking explanations is the selection of evidence: intuitively, high-quality explanations can only be generated given the right evidence. In this work, we investigate the impact of human-curated vs. machine-selected evidence for explanation generation using large language models. To assess the quality of explanations, we focus on transparency (whether an explanation cites sources properly) and utility (whether an explanation is helpful in clarifying a claim). Surprisingly, we found that large language models generate similar or higher quality explanations using machine-selected evidence, suggesting carefully curated evidence (by humans) may not be necessary. That said, even with the best model, the generated explanations are not always faithful to the sources, suggesting further room for improvement in explanation generation for fact-checking.