LSCP, CoML
Abstract:As a first step towards a complete computational model of speech learning involving perception-production loops, we investigate the forward mapping between pseudo-motor commands and articulatory trajectories. Two phonological feature sets, based respectively on generative and articulatory phonology, are used to encode a phonetic target sequence. Different interpolation techniques are compared to generate smooth trajectories in these feature spaces, with a potential optimisation of the target value and timing to capture co-articulation effects. We report the Pearson correlation between a linear projection of the generated trajectories and articulatory data derived from a multi-speaker dataset of electromagnetic articulography (EMA) recordings. A correlation of 0.67 is obtained with an extended feature set based on generative phonology and a linear interpolation technique. We discuss the implications of our results for our understanding of the dynamics of biological motion.
Abstract:While Reinforcement Learning (RL) has been proven essential for tuning large language models (LLMs), it can lead to reward over-optimization (ROO). Existing approaches address ROO by adding KL regularization, requiring computationally expensive hyperparameter tuning. Additionally, KL regularization focuses solely on regularizing the language policy, neglecting a potential source of regularization: the reward function itself. Inspired by demonstration-guided RL, we here introduce the Reward Calibration from Demonstration (RCfD), which leverages human demonstrations and a reward model to recalibrate the reward objective. Formally, given a prompt, the RCfD objective minimizes the distance between the demonstrations' and LLM's rewards rather than directly maximizing the reward function. This objective shift avoids incentivizing the LLM to exploit the reward model and promotes more natural and diverse language generation. We show the effectiveness of RCfD on three language tasks, which achieves comparable performance to carefully tuned baselines while mitigating ROO.
Abstract:Computational modeling plays an essential role in the study of language emergence. It aims to simulate the conditions and learning processes that could trigger the emergence of a structured language within a simulated controlled environment. Several methods have been used to investigate the origin of our language, including agent-based systems, Bayesian agents, genetic algorithms, and rule-based systems. This chapter explores another class of computational models that have recently revolutionized the field of machine learning: deep learning models. The chapter introduces the basic concepts of deep and reinforcement learning methods and summarizes their helpfulness for simulating language emergence. It also discusses the key findings, limitations, and recent attempts to build realistic simulations. This chapter targets linguists and cognitive scientists seeking an introduction to deep learning as a tool to investigate language evolution.
Abstract:We introduce SPIRIT-LM, a foundation multimodal language model that freely mixes text and speech. Our model is based on a pretrained text language model that we extend to the speech modality by continuously training it on text and speech units. Speech and text sequences are concatenated as a single set of tokens, and trained with a word-level interleaving method using a small automatically-curated speech-text parallel corpus. SPIRIT-LM comes in two versions: a BASE version that uses speech semantic units and an EXPRESSIVE version that models expressivity using pitch and style units in addition to the semantic units. For both versions, the text is encoded with subword BPE tokens. The resulting model displays both the semantic abilities of text models and the expressive abilities of speech models. Additionally, we demonstrate that SPIRIT-LM is able to learn new tasks in a few-shot fashion across modalities (i.e. ASR, TTS, Speech Classification).
Abstract:We introduce EmphAssess, a prosodic benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis. We apply this to two tasks: speech resynthesis and speech-to-speech translation. In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output, potentially across a change of speaker and language. As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.
Abstract:We propose WorldSense, a benchmark designed to assess the extent to which LLMs are consistently able to sustain tacit world models, by testing how they draw simple inferences from descriptions of simple arrangements of entities. Worldsense is a synthetic benchmark with three problem types, each with their own trivial control, which explicitly avoids bias by decorrelating the abstract structure of problems from the vocabulary and expressions, and by decorrelating all problem subparts with the correct response. We run our benchmark on three state-of-the-art chat-LLMs (GPT3.5, GPT4 and Llama2-chat) and show that these models make errors even with as few as three objects. Furthermore, they have quite heavy response biases, preferring certain responses irrespective of the question. Errors persist even with chain-of-thought prompting and in-context learning. Lastly, we show that while finetuning on similar problems does result in substantial improvements -- within- and out-of-distribution -- the finetuned models do not generalise beyond a constraint problem space.
Abstract:Due to the absence of explicit word boundaries in the speech stream, the task of segmenting spoken sentences into word units without text supervision is particularly challenging. In this work, we leverage the most recent self-supervised speech models that have proved to quickly adapt to new tasks through fine-tuning, even in low resource conditions. Taking inspiration from semi-supervised learning, we fine-tune an XLS-R model to predict word boundaries themselves produced by top-tier speech segmentation systems: DPDP, VG-HuBERT, GradSeg and DP-Parse. Once XLS-R is fine-tuned, it is used to infer new word boundary labels that are used in turn for another fine-tuning step. Our method consistently improves the performance of each system and sets a new state-of-the-art that is, on average 130% higher than the previous one as measured by the F1 score on correctly discovered word tokens on five corpora featuring different languages. Finally, our system can segment speech from languages unseen during fine-tuning in a zero-shot fashion.
Abstract:In NLP, text language models based on words or subwords are known to outperform their character-based counterparts. Yet, in the speech community, the standard input of spoken LMs are 20ms or 40ms-long discrete units (shorter than a phoneme). Taking inspiration from word-based LM, we introduce a Generative Spoken Language Model (GSLM) based on word-size continuous-valued audio embeddings that can generate diverse and expressive language output. This is obtained by replacing lookup table for lexical types with a Lexical Embedding function, the cross entropy loss by a contrastive loss, and multinomial sampling by k-NN sampling. The resulting model is the first generative language model based on word-size continuous embeddings. Its performance is on par with discrete unit GSLMs regarding generation quality as measured by automatic metrics and subjective human judgements. Moreover, it is five times more memory efficient thanks to its large 200ms units. In addition, the embeddings before and after the Lexical Embedder are phonetically and semantically interpretable.
Abstract:Self-supervised learning (SSL) techniques have achieved remarkable results in various speech processing tasks. Nonetheless, a significant challenge remains in reducing the reliance on vast amounts of speech data for pre-training. This paper proposes to address this challenge by leveraging synthetic speech to augment a low-resource pre-training corpus. We construct a high-quality text-to-speech (TTS) system with limited resources using SSL features and generate a large synthetic corpus for pre-training. Experimental results demonstrate that our proposed approach effectively reduces the demand for speech data by 90\% with only slight performance degradation. To the best of our knowledge, this is the first work aiming to enhance low-resource self-supervised learning in speech processing.
Abstract:Recent work has shown that it is possible to resynthesize high-quality speech based, not on text, but on low bitrate discrete units that have been learned in a self-supervised fashion and can therefore capture expressive aspects of speech that are hard to transcribe (prosody, voice styles, non-verbal vocalization). The adoption of these methods is still limited by the fact that most speech synthesis datasets are read, severely limiting spontaneity and expressivity. Here, we introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis that includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles. We illustrate the challenges and potentials of this dataset with an expressive resynthesis benchmark where the task is to encode the input in low-bitrate units and resynthesize it in a target voice while preserving content and style. We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders, and explore tradeoffs between quality, bitrate and invariance to speaker and style. All the dataset, evaluation metrics and baseline models are open source