Abstract:Audio-to-image retrieval offers an interpretable alternative to audio-only classification for bioacoustic species recognition, but learning aligned audio-image representations is challenging due to the scarcity of paired audio-image data. We propose a simple and data-efficient approach that enables audio-to-image retrieval without any audio-image supervision. Our proposed method uses text as a semantic intermediary: we distill the text embedding space of a pretrained image-text model (BioCLIP-2), which encodes rich visual and taxonomic structure, into a pretrained audio-text model (BioLingual) by fine-tuning its audio encoder with a contrastive objective. This distillation transfers visually grounded semantics into the audio representation, inducing emergent alignment between audio and image embeddings without using images during training. We evaluate the resulting model on multiple bioacoustic benchmarks. The distilled audio encoder preserves audio discriminative power while substantially improving audio-text alignment on focal recordings and soundscape datasets. Most importantly, on the SSW60 benchmark, the proposed approach achieves strong audio-to-image retrieval performance exceeding baselines based on zero-shot model combinations or learned mappings between text embeddings, despite not training on paired audio-image data. These results demonstrate that indirect semantic transfer through text is sufficient to induce meaningful audio-image alignment, providing a practical solution for visually grounded species recognition in data-scarce bioacoustic settings.
Abstract:Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
Abstract:Are large language models (LLMs) sensitive to the distinction between humanly possible languages and humanly impossible languages? This question is taken by many to bear on whether LLMs and humans share the same innate learning biases. Previous work has attempted to answer it in the positive by comparing LLM learning curves on existing language datasets and on "impossible" datasets derived from them via various perturbation functions. Using the same methodology, we examine this claim on a wider set of languages and impossible perturbations. We find that in most cases, GPT-2 learns each language and its impossible counterpart equally easily, in contrast to previous claims. We also apply a more lenient condition by testing whether GPT-2 provides any kind of separation between the whole set of natural languages and the whole set of impossible languages. By considering cross-linguistic variance in various metrics computed on the perplexity curves, we show that GPT-2 provides no systematic separation between the possible and the impossible. Taken together, these perspectives show that LLMs do not share the human innate biases that shape linguistic typology.
Abstract:It takes several years for the developing brain of a baby to fully master word repetition-the task of hearing a word and repeating it aloud. Repeating a new word, such as from a new language, can be a challenging task also for adults. Additionally, brain damage, such as from a stroke, may lead to systematic speech errors with specific characteristics dependent on the location of the brain damage. Cognitive sciences suggest a model with various components for the different processing stages involved in word repetition. While some studies have begun to localize the corresponding regions in the brain, the neural mechanisms and how exactly the brain performs word repetition remain largely unknown. We propose to bridge the gap between the cognitive model of word repetition and neural mechanisms in the human brain by modeling the task using deep neural networks. Neural models are fully observable, allowing us to study the detailed mechanisms in their various substructures and make comparisons with human behavior and, ultimately, the brain. Here, we make first steps in this direction by: (1) training a large set of models to simulate the word repetition task; (2) creating a battery of tests to probe the models for known effects from behavioral studies in humans, and (3) simulating brain damage through ablation studies, where we systematically remove neurons from the model, and repeat the behavioral study to examine the resulting speech errors in the "patient" model. Our results show that neural models can mimic several effects known from human research, but might diverge in other aspects, highlighting both the potential and the challenges for future research aimed at developing human-like neural models.




Abstract:We introduce fastabx, a high-performance Python library for building ABX discrimination tasks. ABX is a measure of the separation between generic categories of interest. It has been used extensively to evaluate phonetic discriminability in self-supervised speech representations. However, its broader adoption has been limited by the absence of adequate tools. fastabx addresses this gap by providing a framework capable of constructing any type of ABX task while delivering the efficiency necessary for rapid development cycles, both in task creation and in calculating distances between representations. We believe that fastabx will serve as a valuable resource for the broader representation learning community, enabling researchers to systematically investigate what information can be directly extracted from learned representations across several domains beyond speech processing. The source code is available at https://github.com/bootphon/fastabx.
Abstract:We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.




Abstract:Human readers can accurately count how many letters are in a word (e.g., 7 in ``buffalo''), remove a letter from a given position (e.g., ``bufflo'') or add a new one. The human brain of readers must have therefore learned to disentangle information related to the position of a letter and its identity. Such disentanglement is necessary for the compositional, unbounded, ability of humans to create and parse new strings, with any combination of letters appearing in any positions. Do modern deep neural models also possess this crucial compositional ability? Here, we tested whether neural models that achieve state-of-the-art on disentanglement of features in visual input can also disentangle letter position and letter identity when trained on images of written words. Specifically, we trained beta variational autoencoder ($\beta$-VAE) to reconstruct images of letter strings and evaluated their disentanglement performance using CompOrth - a new benchmark that we created for studying compositional learning and zero-shot generalization in visual models for orthography. The benchmark suggests a set of tests, of increasing complexity, to evaluate the degree of disentanglement between orthographic features of written words in deep neural models. Using CompOrth, we conducted a set of experiments to analyze the generalization ability of these models, in particular, to unseen word length and to unseen combinations of letter identities and letter positions. We found that while models effectively disentangle surface features, such as horizontal and vertical `retinal' locations of words within an image, they dramatically fail to disentangle letter position and letter identity and lack any notion of word length. Together, this study demonstrates the shortcomings of state-of-the-art $\beta$-VAE models compared to humans and proposes a new challenge and a corresponding benchmark to evaluate neural models.




Abstract:Originally formalized with symbolic representations, syntactic trees may also be effectively represented in the activations of large language models (LLMs). Indeed, a 'Structural Probe' can find a subspace of neural activations, where syntactically related words are relatively close to one-another. However, this syntactic code remains incomplete: the distance between the Structural Probe word embeddings can represent the existence but not the type and direction of syntactic relations. Here, we hypothesize that syntactic relations are, in fact, coded by the relative direction between nearby embeddings. To test this hypothesis, we introduce a 'Polar Probe' trained to read syntactic relations from both the distance and the direction between word embeddings. Our approach reveals three main findings. First, our Polar Probe successfully recovers the type and direction of syntactic relations, and substantially outperforms the Structural Probe by nearly two folds. Second, we confirm that this polar coordinate system exists in a low-dimensional subspace of the intermediate layers of many LLMs and becomes increasingly precise in the latest frontier models. Third, we demonstrate with a new benchmark that similar syntactic relations are coded similarly across the nested levels of syntactic trees. Overall, this work shows that LLMs spontaneously learn a geometry of neural activations that explicitly represents the main symbolic structures of linguistic theory.




Abstract:What role can the otherwise successful Large Language Models (LLMs) play in the understanding of human cognition, and in particular in terms of informing language acquisition debates? To contribute to this question, we first argue that neither humans nor LLMs are general learners, in a variety of senses. We make a novel case for how in particular LLMs follow a dual-optimization process: they are optimized during their training (which is typically compared to language acquisition), and modern LLMs have also been selected, through a process akin to natural selection in a species. From this perspective, we argue that the performance of LLMs, whether similar or dissimilar to that of humans, does not weigh easily on important debates about the importance of human cognitive biases for language.




Abstract:Do architectural differences significantly affect the way models represent and process language? We propose a new approach, based on metric-learning encoding models (MLEMs), as a first step to answer this question. The approach provides a feature-based comparison of how any two layers of any two models represent linguistic information. We apply the method to BERT, GPT-2 and Mamba. Unlike previous methods, MLEMs offer a transparent comparison, by identifying the specific linguistic features responsible for similarities and differences. More generally, the method uses formal, symbolic descriptions of a domain, and use these to compare neural representations. As such, the approach can straightforwardly be extended to other domains, such as speech and vision, and to other neural systems, including human brains.