Abstract:Large-scale pre-trained self-supervised learning (SSL) models have shown remarkable advancements in speech-related tasks. However, the utilization of these models in complex multi-talker scenarios, such as extracting a target speaker in a mixture, is yet to be fully evaluated. In this paper, we introduce target speech extraction (TSE) as a novel downstream task to evaluate the feature extraction capabilities of pre-trained SSL models. TSE uniquely requires both speaker identification and speech separation, distinguishing it from other tasks in the Speech processing Universal PERformance Benchmark (SUPERB) evaluation. Specifically, we propose a TSE downstream model composed of two lightweight task-oriented modules based on the same frozen SSL model. One module functions as a speaker encoder to obtain target speaker information from an enrollment speech, while the other estimates the target speaker's mask to extract its speech from the mixture. Experimental results on the Libri2mix datasets reveal the relevance of the TSE downstream task to probe SSL models, as its performance cannot be simply deduced from other related tasks such as speaker verification and separation.
Abstract:Pre-trained self-supervised learning (SSL) models have achieved remarkable success in various speech tasks. However, their potential in target speech extraction (TSE) has not been fully exploited. TSE aims to extract the speech of a target speaker in a mixture guided by enrollment utterances. We exploit pre-trained SSL models for two purposes within a TSE framework, i.e., to process the input mixture and to derive speaker embeddings from the enrollment. In this paper, we focus on how to effectively use SSL models for TSE. We first introduce a novel TSE downstream task following the SUPERB principles. This simple experiment shows the potential of SSL models for TSE, but extraction performance remains far behind the state-of-the-art. We then extend a powerful TSE architecture by incorporating two SSL-based modules: an Adaptive Input Enhancer (AIE) and a speaker encoder. Specifically, the proposed AIE utilizes intermediate representations from the CNN encoder by adjusting the time resolution of CNN encoder and transformer blocks through progressive upsampling, capturing both fine-grained and hierarchical features. Our method outperforms current TSE systems achieving a SI-SDR improvement of 14.0 dB on LibriMix. Moreover, we can further improve performance by 0.7 dB by fine-tuning the whole model including the SSL model parameters.
Abstract:In this work, we propose an error correction framework, named DiaCorrect, to refine the output of a diarization system in a simple yet effective way. This method is inspired by error correction techniques in automatic speech recognition. Our model consists of two parallel convolutional encoders and a transform-based decoder. By exploiting the interactions between the input recording and the initial system's outputs, DiaCorrect can automatically correct the initial speaker activities to minimize the diarization errors. Experiments on 2-speaker telephony data show that the proposed DiaCorrect can effectively improve the initial model's results. Our source code is publicly available at https://github.com/BUTSpeechFIT/diacorrect.
Abstract:Conventional keyword search systems operate on automatic speech recognition (ASR) outputs, which causes them to have a complex indexing and search pipeline. This has led to interest in ASR-free approaches to simplify the search procedure. We recently proposed a neural ASR-free keyword search model which achieves competitive performance while maintaining an efficient and simplified pipeline, where queries and documents are encoded with a pair of recurrent neural network encoders and the encodings are combined with a dot-product. In this article, we extend this work with multilingual pretraining and detailed analysis of the model. Our experiments show that the proposed multilingual training significantly improves the model performance and that despite not matching a strong ASR-based conventional keyword search system for short queries and queries comprising in-vocabulary words, the proposed model outperforms the ASR-based system for long queries and queries that do not appear in the training data.
Abstract:Self-supervised learning of speech representations from large amounts of unlabeled data has enabled state-of-the-art results in several speech processing tasks. Aggregating these speech representations across time is typically approached by using descriptive statistics, and in particular, using the first- and second-order statistics of representation coefficients. In this paper, we examine an alternative way of extracting speaker and emotion information from self-supervised trained models, based on the correlations between the coefficients of the representations - correlation pooling. We show improvements over mean pooling and further gains when the pooling methods are combined via fusion. The code is available at github.com/Lamomal/s3prl_correlation.
Abstract:In recent years, self-supervised learning paradigm has received extensive attention due to its great success in various down-stream tasks. However, the fine-tuning strategies for adapting those pre-trained models to speaker verification task have yet to be fully explored. In this paper, we analyze several feature extraction approaches built on top of a pre-trained model, as well as regularization and learning rate schedule to stabilize the fine-tuning process and further boost performance: multi-head factorized attentive pooling is proposed to factorize the comparison of speaker representations into multiple phonetic clusters. We regularize towards the parameters of the pre-trained model and we set different learning rates for each layer of the pre-trained model during fine-tuning. The experimental results show our method can significantly shorten the training time to 4 hours and achieve SOTA performance: 0.59%, 0.79% and 1.77% EER on Vox1-O, Vox1-E and Vox1-H, respectively.
Abstract:In recent years, a number of time-domain speech separation methods have been proposed. However, most of them are very sensitive to the environments and wide domain coverage tasks. In this paper, from the time-frequency domain perspective, we propose a densely-connected pyramid complex convolutional network, termed DPCCN, to improve the robustness of speech separation under complicated conditions. Furthermore, we generalize the DPCCN to target speech extraction (TSE) by integrating a new specially designed speaker encoder. Moreover, we also investigate the robustness of DPCCN to unsupervised cross-domain TSE tasks. A Mixture-Remix approach is proposed to adapt the target domain acoustic characteristics for fine-tuning the source model. We evaluate the proposed methods not only under noisy and reverberant in-domain condition, but also in clean but cross-domain conditions. Results show that for both speech separation and extraction, the DPCCN-based systems achieve significantly better performance and robustness than the currently dominating time-domain methods, especially for the cross-domain tasks. Particularly, we find that the Mixture-Remix fine-tuning with DPCCN significantly outperforms the TD-SpeakerBeam for unsupervised cross-domain TSE, with around 3.5 dB performance improvement on target domain test set, without any source domain performance degradation.
Abstract:In this work, we propose a hierarchical subspace model for acoustic unit discovery. In this approach, we frame the task as one of learning embeddings on a low-dimensional phonetic subspace, and simultaneously specify the subspace itself as an embedding on a hyper-subspace. We train the hyper-subspace on a set of transcribed languages and transfer it to the target language. In the target language, we infer both the language and unit embeddings in an unsupervised manner, and in so doing, we simultaneously learn a subspace of units specific to that language and the units that dwell on it. We conduct our experiments on TIMIT and two low-resource languages: Mboshi and Yoruba. Results show that our model outperforms major acoustic unit discovery techniques, both in terms of clustering quality and segmentation accuracy.
Abstract:The paper describes the BUT's speech translation systems. The systems are English$\longrightarrow$German offline speech translation systems. The systems are based on our previous works \cite{Jointly_trained_transformers}. Though End-to-End and cascade~(ASR-MT) spoken language translation~(SLT) systems are reaching comparable performances, a large degradation is observed when translating ASR hypothesis compared to the oracle input text. To reduce this performance degradation, we have jointly-trained ASR and MT modules with ASR objective as an auxiliary loss. Both the networks are connected through the neural hidden representations. This model has an End-to-End differentiable path with respect to the final objective function and also utilizes the ASR objective for better optimization. During the inference both the modules(i.e., ASR and MT) are connected through the hidden representations corresponding to the n-best hypotheses. Ensembling with independently trained ASR and MT models have further improved the performance of the system.
Abstract:Recently, speaker embeddings extracted with deep neural networks became the state-of-the-art method for speaker verification. In this paper we aim to facilitate its implementation on a more generic toolkit than Kaldi, which we anticipate to enable further improvements on the method. We examine several tricks in training, such as the effects of normalizing input features and pooled statistics, different methods for preventing overfitting as well as alternative non-linearities that can be used instead of Rectifier Linear Units. In addition, we investigate the difference in performance between TDNN and CNN, and between two types of attention mechanism. Experimental results on Speaker in the Wild, SRE 2016 and SRE 2018 datasets demonstrate the effectiveness of the proposed implementation.