Abstract:End-to-end neural diarization has evolved considerably over the past few years, but data scarcity is still a major obstacle for further improvements. Self-supervised learning methods such as WavLM have shown promising performance on several downstream tasks, but their application on speaker diarization is somehow limited. In this work, we explore using WavLM to alleviate the problem of data scarcity for neural diarization training. We use the same pipeline as Pyannote and improve the local end-to-end neural diarization with WavLM and Conformer. Experiments on far-field AMI, AISHELL-4, and AliMeeting datasets show that our method substantially outperforms the Pyannote baseline and achieves performance comparable to the state-of-the-art results on AMI and AISHELL-4. In addition, by analyzing the system performance under different data quantity scenarios, we show that WavLM representations are much more robust against data scarcity than filterbank features, enabling less data hungry training strategies. Furthermore, we found that simulated data, usually used to train endto-end diarization models, does not help when using WavLM in our experiments. Additionally, we also evaluate our model on the recent CHiME8 NOTSOFAR-1 task where it achieves better performance than the Pyannote baseline. Our source code is publicly available at https://github.com/BUTSpeechFIT/DiariZen.
Abstract:In this work, we propose an error correction framework, named DiaCorrect, to refine the output of a diarization system in a simple yet effective way. This method is inspired by error correction techniques in automatic speech recognition. Our model consists of two parallel convolutional encoders and a transform-based decoder. By exploiting the interactions between the input recording and the initial system's outputs, DiaCorrect can automatically correct the initial speaker activities to minimize the diarization errors. Experiments on 2-speaker telephony data show that the proposed DiaCorrect can effectively improve the initial model's results. Our source code is publicly available at https://github.com/BUTSpeechFIT/diacorrect.
Abstract:SqueezeFormer has recently shown impressive performance in automatic speech recognition (ASR). However, its inference speed suffers from the quadratic complexity of softmax-attention (SA). In addition, limited by the large convolution kernel size, the local modeling ability of SqueezeFormer is insufficient. In this paper, we propose a novel method HybridFormer to improve SqueezeFormer in a fast and efficient way. Specifically, we first incorporate linear attention (LA) and propose a hybrid LASA paradigm to increase the model's inference speed. Second, a hybrid neural architecture search (NAS) guided structural re-parameterization (SRep) mechanism, termed NSR, is proposed to enhance the ability of the model to extract local interactions. Extensive experiments conducted on the LibriSpeech dataset demonstrate that our proposed HybridFormer can achieve a 9.1% relative word error rate (WER) reduction over SqueezeFormer on the test-other dataset. Furthermore, when input speech is 30s, the HybridFormer can improve the model's inference speed up to 18%. Our source code is available online.
Abstract:Recently, more and more personalized speech enhancement systems (PSE) with excellent performance have been proposed. However, two critical issues still limit the performance and generalization ability of the model: 1) Acoustic environment mismatch between the test noisy speech and target speaker enrollment speech; 2) Hard sample mining and learning. In this paper, dynamic acoustic compensation (DAC) is proposed to alleviate the environment mismatch, by intercepting the noise or environmental acoustic segments from noisy speech and mixing it with the clean enrollment speech. To well exploit the hard samples in training data, we propose an adaptive focal training (AFT) strategy by assigning adaptive loss weights to hard and non-hard samples during training. A time-frequency multi-loss training is further introduced to improve and generalize our previous work sDPCCN for PSE. The effectiveness of proposed methods are examined on the DNS4 Challenge dataset. Results show that, the DAC brings large improvements in terms of multiple evaluation metrics, and AFT reduces the hard sample rate significantly and produces obvious MOS score improvement.
Abstract:In recent years, speaker diarization has attracted widespread attention. To achieve better performance, some studies propose to diarize speech in multiple stages. Although these methods might bring additional benefits, most of them are quite complex. Motivated by spelling correction in automatic speech recognition (ASR), in this paper, we propose an end-to-end error correction framework, termed DiaCorrect, to refine the initial diarization results in a simple but efficient way. By exploiting the acoustic interactions between input mixture and its corresponding speaker activity, DiaCorrect could automatically adapt the initial speaker activity to minimize the diarization errors. Without bells and whistles, experiments on LibriSpeech based 2-speaker meeting-like data show that, the self-attentitive end-to-end neural diarization (SA-EEND) baseline with DiaCorrect could reduce its diarization error rate (DER) by over 62.4% from 12.31% to 4.63%. Our source code is available online at https://github.com/jyhan03/diacorrect.
Abstract:Recently, supervised speech separation has made great progress. However, limited by the nature of supervised training, most existing separation methods require ground-truth sources and are trained on synthetic datasets. This ground-truth reliance is problematic, because the ground-truth signals are usually unavailable in real conditions. Moreover, in many industry scenarios, the real acoustic characteristics deviate far from the ones in simulated datasets. Therefore, the performance usually degrades significantly when applying the supervised speech separation models to real applications. To address these problems, in this study, we propose a novel separation consistency training, termed SCT, to exploit the real-world unlabeled mixtures for improving cross-domain unsupervised speech separation in an iterative manner, by leveraging upon the complementary information obtained from heterogeneous (structurally distinct but behaviorally complementary) models. SCT follows a framework using two heterogeneous neural networks (HNNs) to produce high confidence pseudo labels of unlabeled real speech mixtures. These labels are then updated, and used to refine the HNNs to produce more reliable consistent separation results for real mixture pseudo-labeling. To maximally utilize the large complementary information between different separation networks, a cross-knowledge adaptation is further proposed. Together with simulated dataset, those real mixtures with high confidence pseudo labels are then used to update the HNN separation models iteratively. In addition, we find that combing the heterogeneous separation outputs by a simple linear fusion can further slightly improve the final system performance.
Abstract:PercepNet, a recent extension of the RNNoise, an efficient, high-quality and real-time full-band speech enhancement technique, has shown promising performance in various public deep noise suppression tasks. This paper proposes a new approach, named PercepNet+, to further extend the PercepNet with four significant improvements. First, we introduce a phase-aware structure to leverage the phase information into PercepNet, by adding the complex features and complex subband gains as the deep network input and output respectively. Then, a signal-to-noise ratio (SNR) estimator and an SNR switched post-processing are specially designed to alleviate the over attenuation (OA) that appears in high SNR conditions of the original PercepNet. Moreover, the GRU layer is replaced by TF-GRU to model both temporal and frequency dependencies. Finally, we propose to integrate the loss of complex subband gain, SNR, pitch filtering strength, and an OA loss in a multi-objective learning manner to further improve the speech enhancement performance. Experimental results show that, the proposed PercepNet+ outperforms the original PercepNet significantly in terms of both PESQ and STOI, without increasing the model size too much.
Abstract:In recent years, a number of time-domain speech separation methods have been proposed. However, most of them are very sensitive to the environments and wide domain coverage tasks. In this paper, from the time-frequency domain perspective, we propose a densely-connected pyramid complex convolutional network, termed DPCCN, to improve the robustness of speech separation under complicated conditions. Furthermore, we generalize the DPCCN to target speech extraction (TSE) by integrating a new specially designed speaker encoder. Moreover, we also investigate the robustness of DPCCN to unsupervised cross-domain TSE tasks. A Mixture-Remix approach is proposed to adapt the target domain acoustic characteristics for fine-tuning the source model. We evaluate the proposed methods not only under noisy and reverberant in-domain condition, but also in clean but cross-domain conditions. Results show that for both speech separation and extraction, the DPCCN-based systems achieve significantly better performance and robustness than the currently dominating time-domain methods, especially for the cross-domain tasks. Particularly, we find that the Mixture-Remix fine-tuning with DPCCN significantly outperforms the TD-SpeakerBeam for unsupervised cross-domain TSE, with around 3.5 dB performance improvement on target domain test set, without any source domain performance degradation.
Abstract:Target speech extraction has attracted widespread attention. When microphone arrays are available, the additional spatial information can be helpful in extracting the target speech. We have recently proposed a channel decorrelation (CD) mechanism to extract the inter-channel differential information to enhance the reference channel encoder representation. Although the proposed mechanism has shown promising results for extracting the target speech from mixtures, the extraction performance is still limited by the nature of the original decorrelation theory. In this paper, we propose two methods to broaden the horizon of the original channel decorrelation, by replacing the original softmax-based inter-channel similarity between encoder representations, using an unrolled probability and a normalized cosine-based similarity at the dimensional-level. Moreover, new combination strategies of the CD-based spatial information and target speaker adaptation of parallel encoder outputs are also investigated. Experiments on the reverberant WSJ0 2-mix show that the improved CD can result in more discriminative differential information and the new adaptation strategy is also very effective to improve the target speech extraction.
Abstract:The ConferencingSpeech 2021 challenge is proposed to stimulate research on far-field multi-channel speech enhancement for video conferencing. The challenge consists of two separate tasks: 1) Task 1 is multi-channel speech enhancement with single microphone array and focusing on practical application with real-time requirement and 2) Task 2 is multi-channel speech enhancement with multiple distributed microphone arrays, which is a non-real-time track and does not have any constraints so that participants could explore any algorithms to obtain high speech quality. Targeting the real video conferencing room application, the challenge database was recorded from real speakers and all recording facilities were located by following the real setup of conferencing room. In this challenge, we open-sourced the list of open source clean speech and noise datasets, simulation scripts, and a baseline system for participants to develop their own system. The final ranking of the challenge will be decided by the subjective evaluation which is performed using Absolute Category Ratings (ACR) to estimate Mean Opinion Score (MOS), speech MOS (S-MOS), and noise MOS (N-MOS). This paper describes the challenge, tasks, datasets, and subjective evaluation. The baseline system which is a complex ratio mask based neural network and its experimental results are also presented.