Recently, more and more personalized speech enhancement systems (PSE) with excellent performance have been proposed. However, two critical issues still limit the performance and generalization ability of the model: 1) Acoustic environment mismatch between the test noisy speech and target speaker enrollment speech; 2) Hard sample mining and learning. In this paper, dynamic acoustic compensation (DAC) is proposed to alleviate the environment mismatch, by intercepting the noise or environmental acoustic segments from noisy speech and mixing it with the clean enrollment speech. To well exploit the hard samples in training data, we propose an adaptive focal training (AFT) strategy by assigning adaptive loss weights to hard and non-hard samples during training. A time-frequency multi-loss training is further introduced to improve and generalize our previous work sDPCCN for PSE. The effectiveness of proposed methods are examined on the DNS4 Challenge dataset. Results show that, the DAC brings large improvements in terms of multiple evaluation metrics, and AFT reduces the hard sample rate significantly and produces obvious MOS score improvement.