Abstract:Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.
Abstract:Existing point cloud completion methods, which typically depend on predefined synthetic training datasets, encounter significant challenges when applied to out-of-distribution, real-world scans. To overcome this limitation, we introduce a zero-shot completion framework, termed GenPC, designed to reconstruct high-quality real-world scans by leveraging explicit 3D generative priors. Our key insight is that recent feed-forward 3D generative models, trained on extensive internet-scale data, have demonstrated the ability to perform 3D generation from single-view images in a zero-shot setting. To harness this for completion, we first develop a Depth Prompting module that links partial point clouds with image-to-3D generative models by leveraging depth images as a stepping stone. To retain the original partial structure in the final results, we design the Geometric Preserving Fusion module that aligns the generated shape with input by adaptively adjusting its pose and scale. Extensive experiments on widely used benchmarks validate the superiority and generalizability of our approach, bringing us a step closer to robust real-world scan completion.
Abstract:Point cloud completion is a fundamental yet not well-solved problem in 3D vision. Current approaches often rely on 3D coordinate information and/or additional data (e.g., images and scanning viewpoints) to fill in missing parts. Unlike these methods, we explore self-structure augmentation and propose PointSea for global-to-local point cloud completion. In the global stage, consider how we inspect a defective region of a physical object, we may observe it from various perspectives for a better understanding. Inspired by this, PointSea augments data representation by leveraging self-projected depth images from multiple views. To reconstruct a compact global shape from the cross-modal input, we incorporate a feature fusion module to fuse features at both intra-view and inter-view levels. In the local stage, to reveal highly detailed structures, we introduce a point generator called the self-structure dual-generator. This generator integrates both learned shape priors and geometric self-similarities for shape refinement. Unlike existing efforts that apply a unified strategy for all points, our dual-path design adapts refinement strategies conditioned on the structural type of each point, addressing the specific incompleteness of each point. Comprehensive experiments on widely-used benchmarks demonstrate that PointSea effectively understands global shapes and generates local details from incomplete input, showing clear improvements over existing methods.
Abstract:Introducing BERT into cross-modal settings raises difficulties in its optimization for handling multiple modalities. Both the BERT architecture and training objective need to be adapted to incorporate and model information from different modalities. In this paper, we address these challenges by exploring the implicit semantic and geometric correlations between 2D and 3D data of the same objects/scenes. We propose a new cross-modal BERT-style self-supervised learning paradigm, called Cross-BERT. To facilitate pretraining for irregular and sparse point clouds, we design two self-supervised tasks to boost cross-modal interaction. The first task, referred to as Point-Image Alignment, aims to align features between unimodal and cross-modal representations to capture the correspondences between the 2D and 3D modalities. The second task, termed Masked Cross-modal Modeling, further improves mask modeling of BERT by incorporating high-dimensional semantic information obtained by cross-modal interaction. By performing cross-modal interaction, Cross-BERT can smoothly reconstruct the masked tokens during pretraining, leading to notable performance enhancements for downstream tasks. Through empirical evaluation, we demonstrate that Cross-BERT outperforms existing state-of-the-art methods in 3D downstream applications. Our work highlights the effectiveness of leveraging cross-modal 2D knowledge to strengthen 3D point cloud representation and the transferable capability of BERT across modalities.
Abstract:This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a complete and compatible formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. With this formal system in place, we have been able to seamlessly integrate modern AI models with our formal system. Within this formal framework, AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver, utilizing various methods such as forward search, backward search and AI-assisted search. We've annotated the FormalGeo7k dataset, containing 6,981 (expand to 186,832 through data augmentation) geometry problems with complete formal language annotations. Implementation of the formal system and experiments on the FormalGeo7k validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and FormalGeo7k dataset are available at https://github.com/BitSecret/FormalGeo.
Abstract:Previous text-to-image synthesis algorithms typically use explicit textual instructions to generate/manipulate images accurately, but they have difficulty adapting to guidance in the form of coarsely matched texts. In this work, we attempt to stylize an input image using such coarsely matched text as guidance. To tackle this new problem, we introduce a novel task called text-based style generation and propose a two-stage generative adversarial network: the first stage generates the overall image style with a sentence feature, and the second stage refines the generated style with a synthetic feature, which is produced by a multi-modality style synthesis module. We re-filter one existing dataset and collect a new dataset for the task. Extensive experiments and ablation studies are conducted to validate our framework. The practical potential of our work is demonstrated by various applications such as text-image alignment and story visualization. Our datasets are published at https://www.kaggle.com/datasets/mengyaocui/style-generation.
Abstract:In this paper, we propose a novel network, SVDFormer, to tackle two specific challenges in point cloud completion: understanding faithful global shapes from incomplete point clouds and generating high-accuracy local structures. Current methods either perceive shape patterns using only 3D coordinates or import extra images with well-calibrated intrinsic parameters to guide the geometry estimation of the missing parts. However, these approaches do not always fully leverage the cross-modal self-structures available for accurate and high-quality point cloud completion. To this end, we first design a Self-view Fusion Network that leverages multiple-view depth image information to observe incomplete self-shape and generate a compact global shape. To reveal highly detailed structures, we then introduce a refinement module, called Self-structure Dual-generator, in which we incorporate learned shape priors and geometric self-similarities for producing new points. By perceiving the incompleteness of each point, the dual-path design disentangles refinement strategies conditioned on the structural type of each point. SVDFormer absorbs the wisdom of self-structures, avoiding any additional paired information such as color images with precisely calibrated camera intrinsic parameters. Comprehensive experiments indicate that our method achieves state-of-the-art performance on widely-used benchmarks. Code will be available at https://github.com/czvvd/SVDFormer.
Abstract:Bilateral filter (BF) is a fast, lightweight and effective tool for image denoising and well extended to point cloud denoising. However, it often involves continual yet manual parameter adjustment; this inconvenience discounts the efficiency and user experience to obtain satisfied denoising results. We propose LBF, an end-to-end learnable bilateral filtering network for point cloud denoising; to our knowledge, this is the first time. Unlike the conventional BF and its variants that receive the same parameters for a whole point cloud, LBF learns adaptive parameters for each point according its geometric characteristic (e.g., corner, edge, plane), avoiding remnant noise, wrongly-removed geometric details, and distorted shapes. Besides the learnable paradigm of BF, we have two cores to facilitate LBF. First, different from the local BF, LBF possesses a global-scale feature perception ability by exploiting multi-scale patches of each point. Second, LBF formulates a geometry-aware bi-directional projection loss, leading the denoising results to being faithful to their underlying surfaces. Users can apply our LBF without any laborious parameter tuning to achieve the optimal denoising results. Experiments show clear improvements of LBF over its competitors on both synthetic and real-scanned datasets.
Abstract:How will you repair a physical object with large missings? You may first recover its global yet coarse shape and stepwise increase its local details. We are motivated to imitate the above physical repair procedure to address the point cloud completion task. We propose a novel stepwise point cloud completion network (SPCNet) for various 3D models with large missings. SPCNet has a hierarchical bottom-to-up network architecture. It fulfills shape completion in an iterative manner, which 1) first infers the global feature of the coarse result; 2) then infers the local feature with the aid of global feature; and 3) finally infers the detailed result with the help of local feature and coarse result. Beyond the wisdom of simulating the physical repair, we newly design a cycle loss %based training strategy to enhance the generalization and robustness of SPCNet. Extensive experiments clearly show the superiority of our SPCNet over the state-of-the-art methods on 3D point clouds with large missings.
Abstract:How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to address point cloud completion. To this end, we propose a cross-modal shape-transfer dual-refinement network (termed CSDN), a coarse-to-fine paradigm with images of full-cycle participation, for quality point cloud completion. CSDN mainly consists of "shape fusion" and "dual-refinement" modules to tackle the cross-modal challenge. The first module transfers the intrinsic shape characteristics from single images to guide the geometry generation of the missing regions of point clouds, in which we propose IPAdaIN to embed the global features of both the image and the partial point cloud into completion. The second module refines the coarse output by adjusting the positions of the generated points, where the local refinement unit exploits the geometric relation between the novel and the input points by graph convolution, and the global constraint unit utilizes the input image to fine-tune the generated offset. Different from most existing approaches, CSDN not only explores the complementary information from images but also effectively exploits cross-modal data in the whole coarse-to-fine completion procedure. Experimental results indicate that CSDN performs favorably against ten competitors on the cross-modal benchmark.