Abstract:In the era of large language models (LLMs), the task of ``System I''~-~the fast, unconscious, and intuitive tasks, e.g., sentiment analysis, text classification, etc., have been argued to be successfully solved. However, sarcasm, as a subtle linguistic phenomenon, often employs rhetorical devices like hyperbole and figuration to convey true sentiments and intentions, involving a higher level of abstraction than sentiment analysis. There is growing concern that the argument about LLMs' success may not be fully tenable when considering sarcasm understanding. To address this question, we select eleven SOTA LLMs and eight SOTA pre-trained language models (PLMs) and present comprehensive evaluations on six widely used benchmark datasets through different prompting approaches, i.e., zero-shot input/output (IO) prompting, few-shot IO prompting, chain of thought (CoT) prompting. Our results highlight three key findings: (1) current LLMs underperform supervised PLMs based sarcasm detection baselines across six sarcasm benchmarks. This suggests that significant efforts are still required to improve LLMs' understanding of human sarcasm. (2) GPT-4 consistently and significantly outperforms other LLMs across various prompting methods, with an average improvement of 14.0\%$\uparrow$. Claude 3 and ChatGPT demonstrate the next best performance after GPT-4. (3) Few-shot IO prompting method outperforms the other two methods: zero-shot IO and few-shot CoT. The reason is that sarcasm detection, being a holistic, intuitive, and non-rational cognitive process, is argued not to adhere to step-by-step logical reasoning, making CoT less effective in understanding sarcasm compared to its effectiveness in mathematical reasoning tasks.
Abstract:In the era of large language models (LLMs), the task of ``System I''~-~the fast, unconscious, and intuitive tasks, e.g., sentiment analysis, text classification, etc., have been argued to be successfully solved. However, sarcasm, as a subtle linguistic phenomenon, often employs rhetorical devices like hyperbole and figuration to convey true sentiments and intentions, involving a higher level of abstraction than sentiment analysis. There is growing concern that the argument about LLMs' success may not be fully tenable when considering sarcasm understanding. To address this question, we select eleven SOTA LLMs and eight SOTA pre-trained language models (PLMs) and present comprehensive evaluations on six widely used benchmark datasets through different prompting approaches, i.e., zero-shot input/output (IO) prompting, few-shot IO prompting, chain of thought (CoT) prompting. Our results highlight three key findings: (1) current LLMs underperform supervised PLMs based sarcasm detection baselines across six sarcasm benchmarks. This suggests that significant efforts are still required to improve LLMs' understanding of human sarcasm. (2) GPT-4 consistently and significantly outperforms other LLMs across various prompting methods, with an average improvement of 14.0\%$\uparrow$. Claude 3 and ChatGPT demonstrate the next best performance after GPT-4. (3) Few-shot IO prompting method outperforms the other two methods: zero-shot IO and few-shot CoT. The reason is that sarcasm detection, being a holistic, intuitive, and non-rational cognitive process, is argued not to adhere to step-by-step logical reasoning, making CoT less effective in understanding sarcasm compared to its effectiveness in mathematical reasoning tasks.
Abstract:Stance detection is an active task in natural language processing (NLP) that aims to identify the author's stance towards a particular target within a text. Given the remarkable language understanding capabilities and encyclopedic prior knowledge of large language models (LLMs), how to explore the potential of LLMs in stance detection has received significant attention. Unlike existing LLM-based approaches that focus solely on fine-tuning with large-scale datasets, we propose a new prompting method, called \textit{Chain of Stance} (CoS). In particular, it positions LLMs as expert stance detectors by decomposing the stance detection process into a series of intermediate, stance-related assertions that culminate in the final judgment. This approach leads to significant improvements in classification performance. We conducted extensive experiments using four SOTA LLMs on the SemEval 2016 dataset, covering the zero-shot and few-shot learning setups. The results indicate that the proposed method achieves state-of-the-art results with an F1 score of 79.84 in the few-shot setting.
Abstract:Elaborating a series of intermediate reasoning steps significantly improves the ability of large language models (LLMs) to solve complex problems, as such steps would evoke LLMs to think sequentially. However, human sarcasm understanding is often considered an intuitive and holistic cognitive process, in which various linguistic, contextual, and emotional cues are integrated to form a comprehensive understanding of the speaker's true intention, which is argued not be limited to a step-by-step reasoning process. To verify this argument, we introduce a new prompting framework called SarcasmCue, which contains four prompting strategies, $viz.$ chain of contradiction (CoC), graph of cues (GoC), bagging of cues (BoC) and tensor of cues (ToC), which elicits LLMs to detect human sarcasm by considering sequential and non-sequential prompting methods. Through a comprehensive empirical comparison on four benchmarking datasets, we show that the proposed four prompting methods outperforms standard IO prompting, CoT and ToT with a considerable margin, and non-sequential prompting generally outperforms sequential prompting.
Abstract:Large language models (LLMs) are raging over the medical domain, and their momentum has carried over into the mental health domain, leading to the emergence of few mental health LLMs. Although such mental health LLMs could provide reasonable suggestions for psychological counseling, how to develop an authentic and effective doctor-patient relationship (DPR) through LLMs is still an important problem. To fill this gap, we dissect DPR into two key attributes, i.e., the psychologist's empathy and proactive guidance. We thus present WundtGPT, an empathetic and proactive mental health large language model that is acquired by fine-tuning it with instruction and real conversation between psychologists and patients. It is designed to assist psychologists in diagnosis and help patients who are reluctant to communicate face-to-face understand their psychological conditions. Its uniqueness lies in that it could not only pose purposeful questions to guide patients in detailing their symptoms but also offer warm emotional reassurance. In particular, WundtGPT incorporates Collection of Questions, Chain of Psychodiagnosis, and Empathy Constraints into a comprehensive prompt for eliciting LLMs' questions and diagnoses. Additionally, WundtGPT proposes a reward model to promote alignment with empathetic mental health professionals, which encompasses two key factors: cognitive empathy and emotional empathy. We offer a comprehensive evaluation of our proposed model. Based on these outcomes, we further conduct the manual evaluation based on proactivity, effectiveness, professionalism and coherence. We notice that WundtGPT can offer professional and effective consultation. The model is available at huggingface.
Abstract:The value of text classification's future research has encountered challenges and uncertainties, due to the extraordinary efficacy demonstrated by large language models (LLMs) across numerous downstream NLP tasks. In this era of open-ended language modeling, where task boundaries are gradually fading, an urgent question emerges: have we made significant advances in text classification under the full benefit of LLMs? To answer this question, we propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM by recurrently ensembling a pool of strong base learners. The base learners are constructed by adaptively adjusting the distribution of training samples and iteratively fine-tuning LLMs with them. Such base learners are then ensembled to be a specialized text classification LLM, by recurrently incorporating the historical predictions from the previous learners. Through a comprehensive empirical comparison, we show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average. Further evaluation experiments show a clear surpassing of RGPT over human classification.
Abstract:Large language models (LLMs) and their variants have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks, which has presented a new vision for the development of NLP. Despite their remarkable performance in natural language generating (NLG), LLMs lack a distinct focus on the emotion understanding domain. As a result, using LLMs for emotion recognition may lead to suboptimal and inadequate precision. Another limitation of LLMs is that they are typical trained without leveraging multi-modal information. To overcome these limitations, we propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models with 13,638 multi-modal (i.e., texts and videos) emotional dialogues. The visual information is considered as the supplementary knowledge to construct high-quality instructions. We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations (ERC) datasets and compare the results against the SOTA baselines and other SOTA LLMs. Additionally, DialogueLLM-7B can be easily trained using LoRA on a 40GB A100 GPU in 5 hours, facilitating reproducibility for other researchers.
Abstract:Sarcasm, sentiment, and emotion are three typical kinds of spontaneous affective responses of humans to external events and they are tightly intertwined with each other. Such events may be expressed in multiple modalities (e.g., linguistic, visual and acoustic), e.g., multi-modal conversations. Joint analysis of humans' multi-modal sarcasm, sentiment, and emotion is an important yet challenging topic, as it is a complex cognitive process involving both cross-modality interaction and cross-affection correlation. From the probability theory perspective, cross-affection correlation also means that the judgments on sarcasm, sentiment, and emotion are incompatible. However, this exposed phenomenon cannot be sufficiently modelled by classical probability theory due to its assumption of compatibility. Neither do the existing approaches take it into consideration. In view of the recent success of quantum probability (QP) in modeling human cognition, particularly contextual incompatible decision making, we take the first step towards introducing QP into joint multi-modal sarcasm, sentiment, and emotion analysis. Specifically, we propose a QUantum probabIlity driven multi-modal sarcasm, sEntiment and emoTion analysis framework, termed QUIET. Extensive experiments on two datasets and the results show that the effectiveness and advantages of QUIET in comparison with a wide range of the state-of-the-art baselines. We also show the great potential of QP in multi-affect analysis.
Abstract:Quantum theory, originally proposed as a physical theory to describe the motions of microscopic particles, has been applied to various non-physics domains involving human cognition and decision-making that are inherently uncertain and exhibit certain non-classical, quantum-like characteristics. Sentiment analysis is a typical example of such domains. In the last few years, by leveraging the modeling power of quantum probability (a non-classical probability stemming from quantum mechanics methodology) and deep neural networks, a range of novel quantum-cognitively inspired models for sentiment analysis have emerged and performed well. This survey presents a timely overview of the latest developments in this fascinating cross-disciplinary area. We first provide a background of quantum probability and quantum cognition at a theoretical level, analyzing their advantages over classical theories in modeling the cognitive aspects of sentiment analysis. Then, recent quantum-cognitively inspired models are introduced and discussed in detail, focusing on how they approach the key challenges of the sentiment analysis task. Finally, we discuss the limitations of the current research and highlight future research directions.
Abstract:Multimodal emotion recognition in conversations (mERC) is an active research topic in natural language processing (NLP), which aims to predict human's emotional states in communications of multiple modalities, e,g., natural language and facial gestures. Innumerable implicit prejudices and preconceptions fill human language and conversations, leading to the question of whether the current data-driven mERC approaches produce a biased error. For example, such approaches may offer higher emotional scores on the utterances by females than males. In addition, the existing debias models mainly focus on gender or race, where multibias mitigation is still an unexplored task in mERC. In this work, we take the first step to solve these issues by proposing a series of approaches to mitigate five typical kinds of bias in textual utterances (i.e., gender, age, race, religion and LGBTQ+) and visual representations (i.e, gender and age), followed by a Multibias-Mitigated and sentiment Knowledge Enriched bi-modal Transformer (MMKET). Comprehensive experimental results show the effectiveness of the proposed model and prove that the debias operation has a great impact on the classification performance for mERC. We hope our study will benefit the development of bias mitigation in mERC and related emotion studies.