Abstract:The matching of competences, such as skills, occupations or knowledges, is a key desiderata for candidates to be fit for jobs. Automatic extraction of competences from CVs and Jobs can greatly promote recruiters' productivity in locating relevant candidates for job vacancies. This work presents the first model that jointly extracts and classifies competence from Danish job postings. Different from existing works on skill extraction and skill classification, our model is trained on a large volume of annotated Danish corpora and is capable of extracting a wide range of Danish competences, including skills, occupations and knowledges of different categories. More importantly, as a single BERT-like architecture for joint extraction and classification, our model is lightweight and efficient at inference. On a real-scenario job matching dataset, our model beats the state-of-the-art models in the overall performance of Danish competence extraction and classification, and saves over 50% time at inference.
Abstract:Elaborating a series of intermediate reasoning steps significantly improves the ability of large language models (LLMs) to solve complex problems, as such steps would evoke LLMs to think sequentially. However, human sarcasm understanding is often considered an intuitive and holistic cognitive process, in which various linguistic, contextual, and emotional cues are integrated to form a comprehensive understanding of the speaker's true intention, which is argued not be limited to a step-by-step reasoning process. To verify this argument, we introduce a new prompting framework called SarcasmCue, which contains four prompting strategies, $viz.$ chain of contradiction (CoC), graph of cues (GoC), bagging of cues (BoC) and tensor of cues (ToC), which elicits LLMs to detect human sarcasm by considering sequential and non-sequential prompting methods. Through a comprehensive empirical comparison on four benchmarking datasets, we show that the proposed four prompting methods outperforms standard IO prompting, CoT and ToT with a considerable margin, and non-sequential prompting generally outperforms sequential prompting.
Abstract:The value of text classification's future research has encountered challenges and uncertainties, due to the extraordinary efficacy demonstrated by large language models (LLMs) across numerous downstream NLP tasks. In this era of open-ended language modeling, where task boundaries are gradually fading, an urgent question emerges: have we made significant advances in text classification under the full benefit of LLMs? To answer this question, we propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM by recurrently ensembling a pool of strong base learners. The base learners are constructed by adaptively adjusting the distribution of training samples and iteratively fine-tuning LLMs with them. Such base learners are then ensembled to be a specialized text classification LLM, by recurrently incorporating the historical predictions from the previous learners. Through a comprehensive empirical comparison, we show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average. Further evaluation experiments show a clear surpassing of RGPT over human classification.
Abstract:The computational demands of modern AI have spurred interest in optical neural networks (ONNs) which offer the potential benefits of increased speed and lower power consumption. However, current ONNs face various challenges,most significantly a limited calculation precision (typically around 4 bits) and the requirement for high-resolution signal format converters (digital-to-analogue conversions (DACs) and analogue-to-digital conversions (ADCs)). These challenges are inherent to their analog computing nature and pose significant obstacles in practical implementation. Here, we propose a digital-analog hybrid optical computing architecture for ONNs, which utilizes digital optical inputs in the form of binary words. By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced. The DACs for input data can be removed and the resolution of the ADCs can be greatly reduced. This can increase the operating speed at a high calculation precision and facilitate the compatibility with microelectronics. To validate our approach, we have fabricated a proof-of-concept photonic chip and built up a hybrid optical processor (HOP) system for neural network applications. We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8\times10^{-3}$ at an signal-to-noise ratio (SNR) of 18.2 dB. We have also implemented a convolutional neural network for handwritten digit recognition that shows the same accuracy as the one achieved by a desktop computer. The concept of the digital-analog hybrid optical computing architecture offers a methodology that could potentially be applied to various ONN implementations and may intrigue new research into efficient and accurate domain-specific optical computing architectures for neural networks.
Abstract:Large language models (LLMs) and their variants have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks, which has presented a new vision for the development of NLP. Despite their remarkable performance in natural language generating (NLG), LLMs lack a distinct focus on the emotion understanding domain. As a result, using LLMs for emotion recognition may lead to suboptimal and inadequate precision. Another limitation of LLMs is that they are typical trained without leveraging multi-modal information. To overcome these limitations, we propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models with 13,638 multi-modal (i.e., texts and videos) emotional dialogues. The visual information is considered as the supplementary knowledge to construct high-quality instructions. We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations (ERC) datasets and compare the results against the SOTA baselines and other SOTA LLMs. Additionally, DialogueLLM-7B can be easily trained using LoRA on a 40GB A100 GPU in 5 hours, facilitating reproducibility for other researchers.
Abstract:Quantum theory, originally proposed as a physical theory to describe the motions of microscopic particles, has been applied to various non-physics domains involving human cognition and decision-making that are inherently uncertain and exhibit certain non-classical, quantum-like characteristics. Sentiment analysis is a typical example of such domains. In the last few years, by leveraging the modeling power of quantum probability (a non-classical probability stemming from quantum mechanics methodology) and deep neural networks, a range of novel quantum-cognitively inspired models for sentiment analysis have emerged and performed well. This survey presents a timely overview of the latest developments in this fascinating cross-disciplinary area. We first provide a background of quantum probability and quantum cognition at a theoretical level, analyzing their advantages over classical theories in modeling the cognitive aspects of sentiment analysis. Then, recent quantum-cognitively inspired models are introduced and discussed in detail, focusing on how they approach the key challenges of the sentiment analysis task. Finally, we discuss the limitations of the current research and highlight future research directions.
Abstract:The emerging classical-quantum transfer learning paradigm has brought a decent performance to quantum computational models in many tasks, such as computer vision, by enabling a combination of quantum models and classical pre-trained neural networks. However, using quantum computing with pre-trained models has yet to be explored in natural language processing (NLP). Due to the high linearity constraints of the underlying quantum computing infrastructures, existing Quantum NLP models are limited in performance on real tasks. We fill this gap by pre-training a sentence state with complex-valued BERT-like architecture, and adapting it to the classical-quantum transfer learning scheme for sentence classification. On quantum simulation experiments, the pre-trained representation can bring 50\% to 60\% increases to the capacity of end-to-end quantum models.
Abstract:Text generation has long been a popular research topic in NLP. However, the task of generating recruitment emails from recruiters to candidates in the job recommendation scenario has received little attention by the research community. This work aims at defining the topic of automatic email generation for job recommendation, identifying the challenges, and providing a baseline template-based solution for Danish jobs. Evaluation by human experts shows that our method is effective. We wrap up by discussing the future research directions for better solving this task.
Abstract:Video sentiment analysis as a decision-making process is inherently complex, involving the fusion of decisions from multiple modalities and the so-caused cognitive biases. Inspired by recent advances in quantum cognition, we show that the sentiment judgment from one modality could be incompatible with the judgment from another, i.e., the order matters and they cannot be jointly measured to produce a final decision. Thus the cognitive process exhibits "quantum-like" biases that cannot be captured by classical probability theories. Accordingly, we propose a fundamentally new, quantum cognitively motivated fusion strategy for predicting sentiment judgments. In particular, we formulate utterances as quantum superposition states of positive and negative sentiment judgments, and uni-modal classifiers as mutually incompatible observables, on a complex-valued Hilbert space with positive-operator valued measures. Experiments on two benchmarking datasets illustrate that our model significantly outperforms various existing decision level and a range of state-of-the-art content-level fusion approaches. The results also show that the concept of incompatibility allows effective handling of all combination patterns, including those extreme cases that are wrongly predicted by all uni-modal classifiers.
Abstract:The state-of-the-art Aspect-based Sentiment Analysis (ABSA) approaches are mainly based on either detecting aspect terms and their corresponding sentiment polarities, or co-extracting aspect and opinion terms. However, the extraction of aspect-sentiment pairs lacks opinion terms as a reference, while co-extraction of aspect and opinion terms would not lead to meaningful pairs without determining their sentiment dependencies. To address the issue, we present a novel view of ABSA as an opinion triplet extraction task, and propose a multi-task learning framework to jointly extract aspect terms and opinion terms, and simultaneously parses sentiment dependencies between them with a biaffine scorer. At inference phase, the extraction of triplets is facilitated by a triplet decoding method based on the above outputs. We evaluate the proposed framework on four SemEval benchmarks for ASBA. The results demonstrate that our approach significantly outperforms a range of strong baselines and state-of-the-art approaches.