Abstract:Quantum theory, originally proposed as a physical theory to describe the motions of microscopic particles, has been applied to various non-physics domains involving human cognition and decision-making that are inherently uncertain and exhibit certain non-classical, quantum-like characteristics. Sentiment analysis is a typical example of such domains. In the last few years, by leveraging the modeling power of quantum probability (a non-classical probability stemming from quantum mechanics methodology) and deep neural networks, a range of novel quantum-cognitively inspired models for sentiment analysis have emerged and performed well. This survey presents a timely overview of the latest developments in this fascinating cross-disciplinary area. We first provide a background of quantum probability and quantum cognition at a theoretical level, analyzing their advantages over classical theories in modeling the cognitive aspects of sentiment analysis. Then, recent quantum-cognitively inspired models are introduced and discussed in detail, focusing on how they approach the key challenges of the sentiment analysis task. Finally, we discuss the limitations of the current research and highlight future research directions.
Abstract:Sarcasm, sentiment, and emotion are three typical kinds of spontaneous affective responses of humans to external events and they are tightly intertwined with each other. Such events may be expressed in multiple modalities (e.g., linguistic, visual and acoustic), e.g., multi-modal conversations. Joint analysis of humans' multi-modal sarcasm, sentiment, and emotion is an important yet challenging topic, as it is a complex cognitive process involving both cross-modality interaction and cross-affection correlation. From the probability theory perspective, cross-affection correlation also means that the judgments on sarcasm, sentiment, and emotion are incompatible. However, this exposed phenomenon cannot be sufficiently modelled by classical probability theory due to its assumption of compatibility. Neither do the existing approaches take it into consideration. In view of the recent success of quantum probability (QP) in modeling human cognition, particularly contextual incompatible decision making, we take the first step towards introducing QP into joint multi-modal sarcasm, sentiment, and emotion analysis. Specifically, we propose a QUantum probabIlity driven multi-modal sarcasm, sEntiment and emoTion analysis framework, termed QUIET. Extensive experiments on two datasets and the results show that the effectiveness and advantages of QUIET in comparison with a wide range of the state-of-the-art baselines. We also show the great potential of QP in multi-affect analysis.